摘要:
A magnetic storage medium comprises a plurality of discrete magnetic elements and first and second adjoining servo sectors. Each of the servo sectors comprises first and second rows of the discrete magnetic elements extending in a track direction. The second row of the discrete magnetic elements are stacked relative to the discrete magnetic elements of the first row in a cross-track direction that is perpendicular to the track direction. The discrete magnetic elements of the first servo sector are staggered in the cross-track direction relative to the discrete magnetic elements of the second servo sector.
摘要:
The embodiments disclose a method for patterning a stack, including embedding servo patterns within a final template and creating positions of plural cross-tracked shifted position error signal (PES) fields incrementally from the embedded servo patterns on the final template.
摘要:
A magnetic storage medium comprises a plurality of discrete magnetic elements and first and second adjoining servo sectors. Each of the servo sectors comprises first and second rows of the discrete magnetic elements extending in a track direction. The second row of the discrete magnetic elements are stacked relative to the discrete magnetic elements of the first row in a cross-track direction that is perpendicular to the track direction. The discrete magnetic elements of the first servo sector are staggered in the cross-track direction relative to the discrete magnetic elements of the second servo sector.
摘要:
Extracting transducer position information from bit patterned magnetic media includes providing a magnetic storage medium having at least one data array with multiple discrete and separated recording bits and providing the transducer adjacent the data array. A readback signal dependent upon the multiple recording bits is generated with the transducer. Determining the transducer position information further includes generating at least a first position signal and a second position signal from the readback signal.
摘要:
Embodiments of the invention generally provide an electron beam substrate processing system. In one embodiment, the present invention provides an electron beam substrate processing system where a spindle shaft used to rotate substrates during processing includes at least one optical encoder wheel assembly. The optical encoder wheel assembly is configured to provide rotational speed data signal to a rotational speed control system and a pattern generation clock circuit configured to a provide an angular pattern generator clock signal and to a pattern generator circuit. The pattern generation circuit is configured to control modulation of an electron beam used for substrate processing. In one aspect of the present invention, while the spindle shaft is rotated at a constant linear velocity, the pattern generation circuit controls the modulation of an electron beam such that written mark lengths are sized to be about constant in angular dimension.
摘要:
A rotating recording device, such as an electron beam recorder, is provided with a dual encoder arrangement. A first encoder is employed as a spindle motor controller and located at a first end of a spindle. A second encoder is mounted at a turntable adjacent to a recording surface and used as a position, velocity or clock source for recording the pattern on the substrate. Eccentricity of the mounting of the second encoder is measured against the more accurately mounted spindle control encoder and compensated by a digital clock generating system using a digital phase locked loop.
摘要:
Embodiments of the invention generally provide an electron beam substrate processing system. In one embodiment, the present invention provides an electron beam substrate processing system where a spindle shaft used to rotate substrates during processing includes two encoder wheels. One encoder wheel is configured to provide a rotational speed data signal to a rotational speed control system. Another encoder wheel is configured to provide a pattern generator clock signal at a higher frequency than the rotational speed data signal to a pattern generator. In one embodiment of the present invention, at least one of the encoder wheels is positioned adjacent the substrate to minimize torsional and differential movements between the at least one encoder wheel and the substrate.
摘要:
A rotating recording device, such as an electron beam recorder, is provided with a dual encoder arrangement. A first encoder is employed as a spindle motor controller and located at a first end of a spindle. A second encoder is mounted at a turntable adjacent to a recording surface and used as a position, velocity or clock source for recording the pattern on the substrate. Eccentricity of the mounting of the second encoder is measured against the more accurately mounted spindle control encoder and compensated by a digital clock generating system using a digital phase locked loop.
摘要:
Embodiments of the invention generally provide an electron beam substrate processing system. In one embodiment, the present invention provides an electron beam substrate processing system where a spindle shaft used to rotate substrates during processing includes at least one optical encoder wheel assembly. The optical encoder wheel assembly is configured to provide rotational speed data signal to a rotational speed control system and a pattern generation clock circuit configured to a provide a corrected pattern generator clock signal to a pattern generator circuit. The pattern generation circuit is used to control modulation of an electron beam used for substrate processing. In one aspect of the present invention, repeatable deviations of the rotational speed are measured and processed during substrate processing to correct for such repeatable deviations to increase substrate pattern writing accuracy.
摘要:
The embodiments disclose a method for encoder frequency-shift compensation, including, determining frequency values of an input encoder signal, analyzing an encoder index clock signal and the input encoder signal to determine values of frequency-shifts and compensating for the values of the frequency-shifts to generate a frequency-shift compensated clock.