Micro-motor based swept wavelength optical components

    公开(公告)号:US10852530B2

    公开(公告)日:2020-12-01

    申请号:US16214544

    申请日:2018-12-10

    摘要: Optical spectroscopy is a widely used method to identify the chemical composition of materials and the characteristics of optical signals. Silicon based integrated photonics offers a platform for many optical functions through microelectromechanical systems (MEMS) and microoptoelectromechanical systems (MOEMS), silicon waveguides, integrated CMOS electronics and hybrid integration of compound semiconductor elements for optical gain. Accordingly, it would be beneficial to provide advanced optical tools for techniques such as optical spectroscopy and optical tomography exploiting MOEMS to provide swept filters that offer improved performance, increased integration, reduced footprint, reduced power consumption, increased flexibility, reconfigurability, and lower cost. Further, such MOEMS elements can support the provisioning of swept optical sources, swept filters, swept receivers etc. in the planar waveguide domain without free space optics.

    SYSTEMS AND METHODS FOR ULTRA WIDEBAND IMPULSE RADIO TRANSMITTERS

    公开(公告)号:US20190165828A1

    公开(公告)日:2019-05-30

    申请号:US16261797

    申请日:2019-01-30

    摘要: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Today's leading edge modulated sinusoidal wave wireless communication standards and systems achieve power efficiencies of 50 nJ/bit employing narrowband signaling schemes and traditional RF transceiver architectures. However, such designs severely limit the achievable energy efficiency, especially at lower data rates such as below 1 Mbps. Further, it is important that peak power consumption is supportable by common battery or energy harvesting technologies and long term power consumption neither leads to limited battery lifetimes or an inability for alternate energy sources to sustain them. Accordingly, it would be beneficial for next generation applications to exploit inventive transceiver structures and communication schemes in order to achieve the sub nJ per bit energy efficiencies required by next generation applications.