摘要:
A method for manufacturing a buried-strap includes: forming a trench capacitor structure in a semiconductor substrate, wherein the trench capacitor structure has a doped polysilicon layer and an isolation collar covered by the doped polysilicon layer, and a top surface of the doped polysilicon layer is lower than a top surface of the semiconductor substrate such that a first recess is formed; sequentially forming a first resist layer, a second resist layer and a third resist layer over the semiconductor substrate; sequentially patterning the third resist layer, the second resist layer and the first resist layer, forming a patterned tri-layer resist layer over the semiconductor substrate; partially removing a portion of the doped polysilicon layer exposed by the patterned tri-layer resist layer to form a second recess; removing the patterned tri-layer resist layer; and forming an insulating layer in the second recess and a portion of the first recess.
摘要:
An electrical card connector (100), used for receiving a card (6) having a cutout (61), includes an insulative housing (1), a plurality of contacts (2) retained in the insulative housing, a metal shield (3) covering the insulative housing to define a card receiving room (8) and a card inserting port, and an ejector (4) assembled on the insulative housing. The metal shield includes a main plate (31) and a pair of vertical walls (32) extending from the main plate. A ridge (321) is formed at one of the vertical walls. The ejector includes a slider (41), a spring member (42) and a pin member (43) for cooperatively guiding/ejecting a card. The slider has a main portion (41) extending along the card's insertion/ejection direction. The main portion forms a protruding portion (412) facing toward the card receiving room and a confronting portion (413) facing toward the one vertical wall. The protruding portion is engaged with the cutout of the card when the card is moved into a locked position in such a manner that the ridge leans against the confronting portion and presses the slider towards the card receiving room.
摘要:
An electrical connector mounted on a PCB (printed circuit board) includes an insulating housing having a receiving room and a plurality of contacts retained in the insulating housing. Said insulating housing has a tongue portion and a peripheral wall surrounds said tongue portion which defines said receiving room. Each contact includes a U-shaped contacting portion received in said receiving room, a vertical holding portion retained in an inner surface of said peripheral wall and a connecting portion connecting with said contacting portion and said holding portion. Said connecting portion has a linear leading surface which is formed slanted towards said contacting portion downwardly in order to provide a smooth mating process with a mating connector.
摘要:
A semiconductor device is provided. An amorphous silicon layer that acts as a UV blocking layer replaces a conventional silicon-rich oxide (SRO) layer or the super silicon-rich oxide (SSRO) layer. By doing this, the process window is increased. In addition, silicon nitride sidewall spacer is formed inside the contact hole to prevent charge loss.
摘要:
A method of forming a bit line contact via. The method includes providing a substrate having a transistor with a gate electrode, drain region, and source region, forming a conductive layer overlying the drain region, conformally forming an insulating barrier layer overlying the substrate, blanketly forming a dielectric layer overlying the insulating barrier layer, and forming a via through the dielectric layer and insulating barrier layer, exposing the conductive layer.
摘要:
A method for fabricating a buried plate of a deep trench capacitor is described. A substrate having a deep trench therein is provided. A doped layer is formed on the surface of the deep trench and a material layer is formed on the doped layer. A passivation layer is formed on the sidewall of the deep trench that is not covered by the material layer. After removing the material layer, a thermal process is conducted to drive-in the dopants in the doped layer to the substrate to form a doped region, wherein the doped region serves as a buried plate of the deep trench capacitor. The doped layer also reacts with the substrate to form an oxide layer. After removing the oxide layer, a bottle-shaped deep trench is formed.
摘要:
A method for fabricating a buried plate of a deep trench capacitor is described. A substrate having a deep trench therein is provided. A doped layer is formed on the surface of the deep trench and a material layer is formed on the doped layer. A passivation layer is formed on the sidewall of the deep trench that is not covered by the material layer. After removing the material layer, a thermal process is conducted to drive-in the dopants in the doped layer to the substrate to form a doped region, wherein the doped region serves as a buried plate of the deep trench capacitor. The doped layer also reacts with the substrate to form an oxide layer. After removing the oxide layer, a bottle-shaped deep trench is formed.
摘要:
A method for forming bottle-shaped trenches. First, a substrate is provided. Next, a hard mask with openings is formed on the substrate. The substrate is etched through the openings to form trenches with an upper portion and a lower portion. An isolated layer is formed conformally on the hard mask and in the trenches. A shield layer is formed in the lower portion of the trenches. A part of the insulating layer, which is not covered by the shield layer, is then removed. A protective layer is formed on the upper portion of the trenches. The shield layer and the isolated layer are removed. Finally, the substrate of the lower part of the trenches is wet etched using the protective layer as a mask so as to form bottle-shaped trenches.
摘要:
A process for integrating an alignment mark and a trench device. A substrate having first and second trenches is provided. The second trench is used as the alignment mark having a width larger than the first trench. The trench device is formed in each of the low portion of the first and second trenches, and then a first conductive layer is formed on the trench device in each of the first and second trenches. A second conductive layer is formed overlying the substrate and fills in the first trench and is simultaneously and conformably formed over the inner surface of the second trench. The second conductive layer and a portion of the first conductive layer in the second trench are removed and simultaneously leave a portion of the second conductive layer in the first trench by the etch back process.