摘要:
An optical semiconductor device is provided with a low concentration p-type silicon substrate (1); a low dopant concentration n-type epitaxial layer (second epitaxial layer) (26); a low dopant concentration p-type anode layer (27); a high concentration n-type cathode contact layer (9); a photodiode (2) made of the anode layer (27) and the cathode contact layer (9); and an NPN transistor (3) formed on the n-type epitaxial layer (26). The anode can be substantially completely depleted in the case where the anode layer (27) has its dopant concentration peak in the vicinity of the interface between the silicon substrate (1) and the n-type epitaxial layer (26). Therefore, high speed and high light receiving sensitivity characteristics can be obtained, and further, any influence of auto-doping from peripheral embedding layers can be controlled, so that a depletion layer can be stably formed in the anode. Thus, a photodiode characterized in its high speed and high light receiving sensitivity for short wavelength light and a transistor characterized in its high speed can be mounted on the same semiconductor substrate.
摘要:
An optical semiconductor device includes: a first conductivity type first semiconductor region; a first conductivity type second semiconductor region formed on the first semiconductor region; a second conductivity type third semiconductor region formed on the second semiconductor region; a photodetector section formed of the second semiconductor region and the third semiconductor region; a micro mirror formed of a trench formed selectively in a region of the first semiconductor region and the second semiconductor region except the photodetector section; and a semiconductor laser element held on the bottom face of the trench. A first conductivity type buried layer of which impurity concentration is higher than those of the first semiconductor region and the second semiconductor region is selectively formed between the first semiconductor region and the second semiconductor region in the photodetector section.
摘要:
An optical semiconductor device includes a light-receiving element on a semiconductor substrate of a first conductivity type, the light-receiving element including a light-receiving portion for converting incident light to an electrical current signal and performing a current amplification. The light-receiving portion includes: a semiconductor layer formed on the semiconductor substrate and having an impurity concentration substantially equal to or less than that of the semiconductor substrate; a first semiconductor region of a second conductivity type formed on the semiconductor layer and having an impurity concentration higher than that of the semiconductor layer; and a second semiconductor region of the first conductivity type selectively formed between the semiconductor substrate and the semiconductor layer and having an impurity concentration higher than those of the semiconductor substrate and the semiconductor layer.
摘要:
The semiconductor laser unit comprises a laser emission part having a plurality of semiconductor laser elements of different laser beam wavelengths, and a mirror part having an optical reflection film for reflecting laser beams emitted from the laser emission part. The mirror part is blocked out into a plurality of areas to which each laser beam emitted from each of the plurality of semiconductor laser elements enters, and at the same time the reflection film having high reflectance for the laser beams that enter selectively on the areas is provided in each of the plurality of areas.
摘要:
An optical semiconductor device includes: a first conductivity type first semiconductor region; a first conductivity type second semiconductor region formed on the first semiconductor region; a second conductivity type third semiconductor region formed on the second semiconductor region; a photodetector section formed of the second semiconductor region and the third semiconductor region; a micro mirror formed of a trench formed selectively in a region of the first semiconductor region and the second semiconductor region except the photodetector section; and a semiconductor laser element held on the bottom face of the trench. A first conductivity type buried layer of which impurity concentration is higher than those of the first semiconductor region and the second semiconductor region is selectively formed between the first semiconductor region and the second semiconductor region in the photodetector section.
摘要:
An optical semiconductor device includes: a first conductivity type first semiconductor region; a first conductivity type second semiconductor region formed on the first semiconductor region; a second conductivity type third semiconductor region formed on the second semiconductor region; a photodetector section formed of the second semiconductor region and the third semiconductor region; a micro mirror formed of a trench formed selectively in a region of the first semiconductor region and the second semiconductor region except the photodetector section; and a semiconductor laser element held on the bottom face of the trench. A first conductivity type buried layer of which impurity concentration is higher than those of the first semiconductor region and the second semiconductor region is selectively formed between the first semiconductor region and the second semiconductor region in the photodetector section.
摘要:
An optical semiconductor device includes a semiconductor substrate; a light receiving element formed on the semiconductor substrate; a light absorbing element formed on the semiconductor substrate and located adjacent to the light receiving element; and a semiconductor element formed on the semiconductor substrate and used for signal processing. The light absorbing element includes a fifth semiconductor layer, and a light absorption region in the light receiving element has a different structure from a light absorption region in the light absorbing element.
摘要:
An optical semiconductor device is provided with a low concentration p-type silicon substrate (1); a low dopant concentration n-type epitaxial layer (second epitaxial layer) (26); a low dopant concentration p-type anode layer (27); a high concentration n-type cathode contact layer (9); a photodiode (2) made of the anode layer (27) and the cathode contact layer (9); and an NPN transistor (3) formed on the n-type epitaxial layer (26). The anode can be substantially completely depleted in the case where the anode layer (27) has its dopant concentration peak in the vicinity of the interface between the silicon substrate (1) and the n-type epitaxial layer (26). Therefore, high speed and high light receiving sensitivity characteristics can be obtained, and further, any influence of auto-doping from peripheral embedding layers can be controlled, so that a depletion layer can be stably formed in the anode. Thus, a photodiode characterized in its high speed and high light receiving sensitivity for short wavelength light and a transistor characterized in its high speed can be mounted on the same semiconductor substrate.
摘要:
An optical semiconductor device includes a phototransistor for receiving incident light. The phototransistor includes a collector layer of a first conductivity type formed on a semiconductor substrate, a base layer of a second conductivity type formed on the collector layer, and an emitter layer of a first conductivity type formed on the base layer. A thickness of the emitter layer is equal to or less than an absorption length of the incident light in the semiconductor substrate.
摘要:
An optical semiconductor device includes a semiconductor substrate; a light receiving element formed on the semiconductor substrate; a light absorbing element formed on the semiconductor substrate and located adjacent to the light receiving element; and a semiconductor element formed on the semiconductor substrate and used for signal processing. The light absorbing element includes a fifth semiconductor layer, and a light absorption region in the light receiving element has a different structure from a light absorption region in the light absorbing element.