摘要:
A surface treating process according to the present invention, a vapor deposited film is formed from an easily oxidizable vapor-depositing material on the surface of a work by evaporating the vapor-depositing material in a state in which the vapor deposition controlling gas has been supplied to at least zones near a melting/evaporating source and the work within a treating chamber. Thus, the vapor deposited film can be formed stably on the surface of a desired work without requirement of a long time for providing a high degree of vacuum and without use of a special apparatus. In addition, the use of the surface treating process ensures that a corrosion resistance can be provided to a rare earth metal-based permanent magnet extremely liable to be oxidized, without degradation of a high magnetic characteristic of the magnet. A surface treating apparatus according to the present invention includes a melting/evaporating source for melting and evaporating a wire-shaped vapor-depositing material containing a vapor deposition controlling gas, and a member for retaining a work on which the vapor-depositing material is deposited. The melting/evaporating source and the work retaining member are disposed in a treating chamber of the surface treating chamber. The apparatus further includes a vapor-depositing material supply means for supplying the wire-shaped vapor-depositing material containing the vapor deposition controlling gas to the melting-evaporating source.
摘要:
A compound for a rare-earth bonded magnet includes a rare-earth alloy powder and a binder. The rare-earth alloy powder includes at least about 2 mass % of Ti-containing nanocomposite magnet powder particles with a composition represented by (Fe1-mTm)100-x-y-zQxRyMz, where T is Co and/or Ni; Q is B with or without C; R is at least one rare-earth element substantially excluding La and Ce; M is at least one metal element selected from Ti, Zr and Hf and always includes Ti; and 10
摘要:
A process for treating surfaces of rare earth metal-based permanent magnets, comprising removing an oxide layer formed on a surface of each of the permanent magnets using a blasting apparatus. The apparatus comprises a tubular barrel formed of a mesh net for accommodation of work pieces and supported circumferentially outside a center axis of a support member rotatable about the center axis, and an injection nozzle disposed to inject a blast material against the work pieces from the outside of the tubular barrel, wherein at least one of the tubular barrel and the support member is detachably mounted. The process further comprises removing the tubular barrel or the support member from the blasting apparatus and attaching the tubular barrel or the support member to a vapor deposited film forming apparatus, where a metal film is formed on the surface of each of the permanent magnets by a vapor deposition process.
摘要:
The present invention provides a process for producing a rare earth metal-based permanent magnet having, on its surface, a corrosion-resistant film containing inorganic fine particles having a specific average particle size and dispersed in a film phase formed from a silicon compound. In a heat treatment for forming a film by a hydrolyzing reaction and a thermally decomposing reaction of the silicon compound, followed by a polymerizing reaction, a stress is generated within the film by the shrinkage of the film. In the corrosion-resistant film formed by the producing process according to the present invention, however, such stress is dispersed by the presence of the inorganic fine particles and hence, the generation of physical defects such as cracks is inhibited. In addition, voids between the adjacent inorganic fine particles are filled with the film phase formed from the silicon compound and hence, the formed film is dense. Further, no alkali ions are contained in the film and hence, the film itself is excellent in corrosion resistance. Yet further, the film has an excellent close adhesion to the magnet achieved by an excellent reactivity with the surface of the magnet.
摘要:
A hollow work having a hole communicating with the outside and a fine metal powder producing material are placed into a treating vessel, where the fine metal powder producing material is brought into flowing contact with the surface of the work, thereby adhering a fine metal powder produced from the fine metal powder producing material to the surface of the work. The hollow work may be a ring-shaped bonded magnet. Thus, a film having an excellent corrosion resistance can be formed without use of a third component such as a resin and a coupling agent by providing an electric conductivity to the entire surface of the magnet, i.e., not only to the outer surface (including end faces) but also to the inner surface of the magnet and subjecting the magnet to an electroplating treatment.
摘要:
The present invention provides an Fe—B—R based permanent magnet, which has a chemical conversion coating film formed on its surface with an aluminum film interposed therebetween, the chemical conversion coating film containing at least one of titanium and zirconium, phosphorus, oxygen and fluorine as constituting elements, and a process for producing such an Fe—B—R based permanent magnet. In the permanent magnet, the chemical conversion coating film is adhered firmly to the magnet with the aluminum film interposed therebetween and hence, the magnet is excellent in corrosion resistance. Even if the magnet is left to stand for a long time under high-temperature and high-humidity conditions of a temperature of 80° C. and a relative humidity of 90%, the magnet exhibits a stable high magnetic characteristic which cannot deteriorate. Moreover, the film is free from hexa-valent chromium.
摘要:
An Fe—B—R based permanent magnet and metal pieces are placed into a treating vessel, where they are vibrated and/or agitated, whereby a metal film is formed on the surface of the magnet. A sol solution produced by the hydrolytic reaction and the polymerizing reaction of a metal compound which is a starting material for a metal oxide film is applied to the metal film and subjected to a heat treatment to form a metal oxide film. Therefore, it is possible to form, on the surface of the magnet, a corrosion-resistant film which can be produced easily and at a low cost without carrying-out of a plating treatment or a treatment using hexa-valent chromium and which has an excellent adhesion to the surface of the magnet and can exhibit a stable high magnetic characteristic which cannot be degraded even if the magnet is left to stand for a long period of time under high-temperature and high-humidity conditions of a temperature of 80° C. and a relative humidity of 90%. Thus, it is possible to provide an Fe—B—R based permanent magnet having an excellent corrosion resistance.
摘要:
A method of making a magnetic alloy material includes the steps of: preparing a melt of an alloy material having a predetermined composition; rapidly cooling and solidifying the melt to obtain a rapidly solidified alloy represented by: Fe100-a-b-cREaAbTMc where RE is at least one rare-earth element selected from La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er and Tm and including at least about 90 at % of La; A is at least one element selected from Al, Si, Ga, Ge and Sn; TM is at least one transition metal element selected from Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn; and 5 at %≦a≦10 at %, 4.7 at %≦b≦18 at % and 0 at %≦c≦9 at %; and producing a compound phase having an NaZn13-type crystal structure in at least about 70 vol % of the rapidly solidified alloy.
摘要:
An R—Fe—B based rare-earth alloy powder with a mean particle size of less than about 20 μm is provided and compacted to make a powder compact. Next, the powder compact is subjected to a heat treatment at a temperature of about 550° C. to less than about 1,000° C. within hydrogen gas, thereby producing hydrogenation and disproportionation reactions (HD processes). Then, the powder compact is subjected to another heat treatment at a temperature of about 550° C. to less than about 1,000° C. within either a vacuum or an inert atmosphere, thereby producing desorption and recombination reactions and obtaining a porous material including fine crystal grains, of which the density is about 60% to about 90% of their true density and which have an average crystal grain size of about 0.01 μm to about 2 μm (DR processes). Thereafter, the porous material is subjected to yet another heat treatment at a temperature of about 750° C. to less than about 1,000° C. within either the vacuum or the inert atmosphere, thereby further increasing its density to about 93% or more of their true density and making an R—Fe—B based microcrystalline high-density magnet.
摘要:
A method of making a magnetic alloy material includes the steps of: preparing a melt of an alloy material having a predetermined composition; rapidly cooling and solidifying the melt to obtain a rapidly solidified alloy represented by: Fe100-a-b-cREaAbTMc where RE is at least one rare-earth element selected from La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er and Tm and including at least about 90 at % of La; A is at least one element selected from Al, Si, Ga, Ge and Sn; TM is at least one transition metal element selected from Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn; and 5 at %≦a≦10 at %, 4.7 at %≦b≦18 at % and 0 at %≦c≦9 at %; and producing a compound phase having an NaZn13-type crystal structure in at least about 70 vol % of the rapidly solidified alloy.
摘要翻译:制造磁性合金材料的方法包括以下步骤:制备具有预定组成的合金材料的熔体; 快速冷却和固化熔体以获得由以下物质表示的快速固化的合金:Fe u> sub> / SUB>其中RE是选自La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er和Tm中的至少一种稀土元素,并且包括至少约90at%的La ; A是选自Al,Si,Ga,Ge和Sn中的至少一种元素; TM是选自Sc,Ti,V,Cr,Mn,Co,Ni,Cu和Zn中的至少一种过渡金属元素; 和5原子%<= a <= 10原子%,4.7原子%<= b <= 18原子%和0原子%<= c <= 9原子% 并在至少约70vol%的快速凝固合金中生产具有NaZn 13 N型晶体结构的化合物相。