摘要:
Skew between a first clock signal received by a first analog-to-digital converter (ADC) and a second clock signal received by a second ADC is adjusted to minimize error. Each ADC has an ADC element that produces a respective first or second digital output signal in response to an analog input signal and a respective first or second clock signal. A correction signal is produced in response to the first and second digital output signals. The skew between the first and second clock signals is then adjusted in response to the correction signal.
摘要:
A receiver includes a filter stage that receives, filters, and equalizes a received signal, and a decisional feedback loop coupled to the filter stage that receives and processes a signal output from the filter stage using remodulation. The decisional feedback loop includes a converter that generates a baseband signal, a detector that generates a decision signal, a restorative signal generator that generates a restorative signal using remodulation, and a carrier loop that generates a frequency correction signal and provides a frequency-offset estimate. The restorative signal and the frequency correction signal are provided to the converter to compensate for inter-symbol interference. The presented “remodulation” technique decouples interaction between the carrier loop, the pre-filters, and the equalizer of the restorative signal generator, providing an architecture that is more stable and significantly faster than conventional architectures.
摘要:
A receiver includes a filter for filtering a received signal to produce a filtered signal. A converter converts the filtered signal to a baseband signal that is substantially free of an initial frequency offset and inter-symbol interference (ISI), responsive to a frequency-offset estimate and a restorative signal that compensates for the ISI. A detector detects symbols in the baseband signal to produce a decision signal. A restorative signal generator generates, from the decision signal, the restorative signal responsive to the frequency-offset estimate, such that the restorative signal compensates for the ISI.
摘要:
Carrier signals are modulated by information (e.g., television) signals in a particular frequency range. The information signals are oversampled at a first frequency greater than any of the frequencies in the particular frequency range to provide digital signals at a second frequency. The digital signals are introduced to a carrier recovery loop which provides a feedback to regulate the frequency of the digital signals at the second frequency. The digital signals are introduced to a symbol recovery loop which provides a feedback to maintain the time for the production of the digital signals in the middle of the data signals. The gain of the digital signals is also regulated in a feedback loop. The digital signals are processed to recover the data in the data signals. By providing digital feedbacks, the information recovered from the digital signals can be quite precise. In one embodiment, the carrier signals are demodulated to produce baseband inphase and quadrature signals. The inphase and quadrature signals are then oversampled and regulated in the feedback loops as described above. In a second embodiment, the carrier signals downconverted to produce intermediate frequency signals which are oversampled to produce the digital signals at the second frequency without producing the inphase and quadrature signals. The oversampled signals are then regulated in the feedback loops as described above. In a third embodiment, the carrier signals are oversampled without being downconverted and without producing the inphase and quadrature signals.
摘要:
A receiver includes a filter for filtering a received signal to produce a filtered signal. A converter converts the filtered signal to a baseband signal that is substantially free of an initial frequency offset and inter-symbol interference (ISI), responsive to a frequency-offset estimate and a restorative signal that compensates for the ISI. A detector detects symbols in the baseband signal to produce a decision signal. A restorative signal generator generates, from the decision signal, the restorative signal responsive to the frequency-offset estimate, such that the restorative signal compensates for the ISI.
摘要:
Skew between a first clock signal received by a first analog-to-digital converter (ADC) and a second clock signal received by a second ADC is adjusted to minimize error. Each ADC has an ADC element that produces a respective first or second digital output signal in response to an analog input signal and a respective first or second clock signal. A correction signal is produced in response to the first and second digital output signals. The skew between the first and second clock signals is then adjusted in response to the correction signal.
摘要:
An apparatus for converting an analog signal to a digital signal comprising a first analog to digital converter for generating a first digital value from an analog value. A second analog to digital converter for generating a second digital value from the analog value. Logic for determining a correction factor for the second digital value based on a difference between the first digital value and the second digital value, wherein the logic updates the correction factor.
摘要:
Digital signal processing for television signals includes digital feedback loops. Analog information signals are oversampled to provide digital signals. The digital signals are introduced to a digital carrier recovery loop and a digital symbol recovery loop. The gain of the digital signals is also regulated in a feedback loop. The digital signals are processed to recover the data in the data signals. The use of digital feedback loops allows information recovered from the digital signals to be precise. Carrier signals can be directly demodulated to produce baseband inphase and quadrature signals, or first downconverted to produce intermediate frequency signals.
摘要:
An apparatus for converting an analog signal to a digital signal comprising a first analog to digital converter for generating a first digital value from an analog value. A second analog to digital converter for generating a second digital value from the analog value. Logic for determining a correction factor for the second digital value based on a difference between the first digital value and the second digital value, wherein the logic updates the correction factor.