Abstract:
A method can be used for the production of a coated substrate. The coating contains copper. A copper precursor and a substrate are provided. The copper precursor is a copper(I) complex which contains no fluorine. A copper-containing layer is deposited by means of atomic layer deposition (ALD) at least on partial regions of the substrate surface by using the precursor. Optionally, a reduction step is performed in which a reducing agent acts on the substrate obtained in the layer deposition step. In various embodiments, the precursor is a complex of the formula L2Cu(X∩X) in which L are identical or different σ-donor-π acceptor ligands and/or identical or different σ,π-donor-π acceptor ligands and X∩X is a bidentate ligand which is selected from the group consisting of β-diketonates, β-ketoiminates, β-diiminates, amidinates, carboxylates and thiocarboxylates.
Abstract:
A method can be used for the production of a coated substrate. The coating contains copper. A copper precursor and a substrate are provided. The copper precursor is a copper(I) complex which contains no fluorine. A copper-containing layer is deposited by means of atomic layer deposition (ALD) at least on partial regions of the substrate surface by using the precursor. Optionally, a reduction step is performed in which a reducing agent acts on the substrate obtained in the layer deposition step. In various embodiments, the precursor is a complex of the formula L2Cu(X∩X) in which L are identical or different σ-donor-π acceptor ligands and/or identical or different σ,π-donor-π acceptor ligands and X∩X is a bidentate ligand which is selected from the group consisting of β-diketonates, β-ketoiminates, β-diiminates, amidinates, carboxylates and thiocarboxylates.
Abstract:
A method for producing a substrate with a copper or a copper-containing coating is disclosed. The method comprises a first step wherein a first precursor, a second precursor and a substrate are provided. The first precursor is a copper complex that contains no fluorine and the second precursor is selected from a ruthenium complex, a nickel complex, a palladium complex or mixtures thereof. In the second step, a layer is deposited at least on partial regions of a surface of the substrate by using the first precursor and the second precursor by means of atomic layer deposition (ALD). The molar ratio of the first precursor:second precursor used for the ALD extends from 90:10 to 99.99:0.01. The obtained layer contains copper and at least one of ruthenium, nickel and palladium. Finally, a reduction is performed step in which a reducing agent acts on the substrate obtained after depositing the copper-containing layer.
Abstract:
A method for producing a substrate with a copper or a copper-containing coating is disclosed. The method comprises a first step wherein a first precursor, a second precursor and a substrate are provided. The first precursor is a copper complex that contains no fluorine and the second precursor is selected from a ruthenium complex, a nickel complex, a palladium complex or mixtures thereof. In the second step, a layer is deposited at least on partial regions of a surface of the substrate by using the first precursor and the second precursor by means of atomic layer deposition (ALD). The molar ratio of the first precursor:second precursor used for the ALD extends from 90:10 to 99.99:0.01. The obtained layer contains copper and at least one of ruthenium, nickel and palladium. Finally, a reduction is performed step in which a reducing agent acts on the substrate obtained after depositing the copper-containing layer.