Abstract:
A method and apparatus for training in an aircraft. A display system is associated with an aircraft. A sensor system is associated with the aircraft. A training processor is configured to be connected to the aircraft. The training processor is configured generate constructive data for a number of simulation objects and generate simulation sensor data using the constructive data. The training processor is further configured to present the simulation sensor data with live sensor data generated by the sensor system for an aircraft on a display system in the aircraft.
Abstract:
A method of simulating the behavior of a user-interactive environment, the method comprising: (a) running a virtual environment (VE) simulation application that (1) graphically depicts a VE, (2) receives input from a user that corresponds to a user interaction with the VE, and (3) provides graphical output to the user that corresponds to a condition of the VE; (b) running a functional simulation application that determines the condition for the VE at least in part based upon the user input; (c) communicating the user input received by the VE simulation application to the functional simulation application via a high level architecture (HLA) protocol; and (d) communicating the condition determined by the functional simulation application to the VE simulation application via the HLA protocol.
Abstract:
A method and system for providing three dimensional (3D) work instructions for modification tasks is provided. The method includes, determining if a 3D model exists for at least a part of an assembly; extracting model based data from a product data manager; assembling a component list for a work instruction with 3D source data; determining if recent model based process data is available for use; and creating a work instruction with 3D source data. The system includes a computing system for executing the foregoing steps.
Abstract:
A method of developing a plan for repairing an aircraft by attaching a replacement part to a receiving portion of the aircraft comprises scanning the receiving portion of the aircraft to acquire information about at least one of dimensions, a position, and an orientation of the receiving portion. The method further comprises scanning a plurality of potential replacement parts to acquire dimensional information about the potential replacement parts. The method also comprises creating a repair plan including processing the information acquired in the scanning steps to identify a preferred replacement part of the plurality of potential replacement parts for attaching to the receiving portion of the aircraft.