Abstract:
An example method of controlling a fuel cell power plant based on provided power includes selectively varying an electrical resistance of the variable resistive device responsive to at least one of a power provided by the fuel cell power plant, a current provided by the fuel cell power plant, or a voltage decay rate.
Abstract:
The invention is a hydrogen passivation shut down system for a fuel cell power plant (10, 200). During shut down of the plant (10, 200), hydrogen fuel is permitted to transfer between an anode flow path (24, 24′) and a cathode flow path (38, 38′). A passive hydrogen bleed line (202) permits passage of a smallest amount of hydrogen into the fuel cell (12′) necessary to maintain the fuel cell (12′) in a passive state. A diffusion media (204) may be secured in fluid communication with the bleed line (202) to maintain a constant, slow rate of diffusion of the hydrogen into the fuel cell (12′) despite varying pressure differentials between the shutdown fuel cell (12′) and ambient atmosphere adjacent the cell (12′).
Abstract:
A process for regenerating a selective oxidizer bed, by the introduction of oxygen is provided. In a single oxidizer bed environment, regeneration may be carried out on shut-down or on start-up. On start-up, the process includes providing a selective oxidizer bed as well a fuel processor. The selective oxidizer bed is heated to approximately 180° F. Air is passed through the selective oxidizer bed while maintaining the selective oxidizer bed at a temperature of approximately 180° F. for 1-2 minutes. The selective oxidizer is then purged with steam to remove residual air therefrom. Fuel is then introduced from the fuel processor into the selective oxidizer. On shut-down, residual fuel is purged from the oxidizer bed and then air is passed therethrough while maintaining the bed at a temperature between approximately 180° F. to approximately 220° F. The oxidizer is allowed to cool to ambient temperature and then heated to 180° F. Residual air is then purged from the oxidizer for subsequent introduction of fuel. Multiple oxidizer beds may be provided in parallel to one another to enable continuous, uninterrupted operation with bed remaining operation at all times while the other is being regenerated. Regeneration may also be carried out by thermal cycling of the selective oxidizer bed.
Abstract:
An example method of controlling a fuel cell power plant based on provided power includes selectively varying an electrical resistance of the variable resistive device responsive to at least one of a power provided by the fuel cell power plant, a current provided by the fuel cell power plant, or a voltage decay rate.
Abstract:
A fuel cell is disclosed that includes an electrode assembly arranged between a cathode and an anode. The anode and cathode have lateral surfaces adjoining lateral surface of the electrode assembly and respectively include fuel and oxidant flow fields. Interfacial seals are not arranged between the lateral surfaces. Instead, a sealant is applied to the anode, the cathode and the electrode assembly to fluidly separate the fuel and oxidant flow fields. In one example, the adjoining lateral surfaces are in abutting engagement with one another. The sealant is applied in a liquid, uncured state to perimeter surfaces of the electrode assembly, the anode and the cathode that surround the lateral surfaces.
Abstract:
A fuel cell stack (31) includes a plurality of fuel cells (9) each having an electrolyte such as a PEM (10), anode and cathode catalyst layers (13, 14), anode and cathode gas diffusion layers (16, 17), and water transport plates (21, 28) adjacent the gas diffusion layers. The cathode diffusion layer of cells near the cathode end (36) of the stack have a high water permeability, such as greater than 3×10−4 g/(Pa s m) at about 80° C. and about 1 atmosphere, whereas the cathode gas diffusion layer in cells near the anode end (35) have water vapor permeance greater than 3×10−4 g/(Pa s m) at about 80° C. and about 1 atmosphere. In one embodiment, the anode gas diffusion layer of cells near the anode end (35) of the stack have a higher liquid water permeability than the anode gas diffusion layer in cells near the cathode end; a second embodiment reverses that relationship.
Abstract:
The fuel flow channels (20a) of the end fuel cell (9a) at the anode end (34) of a fuel cell stack are significantly deeper than the fuel flow field channels (20) of the remaining fuel cells (9) in the stack, whereby fuel starvation caused by ice in the fuel flow channels is avoided during cold startup. The fuel flow field channels of the end cell (9) at the anode end of the stack is between about 0.15 mm and about 1.5 mm deeper than the fuel flow field channels in the remaining fuel cells of the stack, or between about 35% and about 65% deeper than the fuel flow field channels in the remaining fuel cells of the stack.
Abstract:
The fuel flow channels (20a) of the end fuel cell (9a) at the anode end (34) of a fuel cell stack are significantly deeper than the fuel flow field channels (20) of the remaining fuel cells (9) in the stack, whereby fuel starvation caused by ice in the fuel flow channels is avoided during cold startup. The fuel flow field channels of the end cell (9) at the anode end of the stack is between about 0.15 mm and about 1.5 mm deeper than the fuel flow field channels in the remaining fuel cells of the stack, or between about 35% and about 65% deeper than the fuel flow field channels in the remaining fuel cells of the stack.
Abstract:
The invention is a hydrogen passivation shut down system for a fuel cell power plant (10, 200). During shut down of the plant (10, 200), hydrogen fuel is permitted to transfer between an anode flow path (24, 24′) and a cathode flow path (38, 38′) while a low-pressure hydrogen generator (202) selectively generates an adequate amount of hydrogen and directs flow of the low-pressure hydrogen into the fuel cell (12′) downstream from a hydrogen inlet valve (52′) to maintain the fuel cell (12′) in a passive state.
Abstract:
A decontamination procedure for a fuel cell power plant (10) includes operating the plant to produce electrical power for an operating period, and then terminating operation of the plant (10) for a decontamination period, and then, whenever optimal electrical production of a plant fuel cell (12) is reduced by at least 5% by contaminants adsorbed by fuel cell electrodes (24, 42), decontaminating the fuel cell (12) of the plant (10) during the decontamination period by oxidizing contaminants adsorbed by electrodes (24, 42) of the fuel cell. Oxidizing the contaminants may be accomplished by various steps including exposing the electrodes (24, 42) to flowing oxygen; to heated flowing oxygen; to a sequence of start-stop cycles; and, to varying controlled potentials.