摘要:
Systems and methods for fuel cell stack part serialization and tracking. In an embodiment, a barcode may be applied to a fuel cell stack part which may identify the fuel cell stack part. In an embodiment, the barcode may be applied as ink on a green fuel cell stack part prior to sintering. In an embodiment, a portion of a fuel cell stack part may be imaged and pattern recognition techniques may be utilized to identify the fuel cell stack part based on the unique features of fuel cell stack part. In an embodiment, portion of a fuel cell stack part may be measured to generate one or more series of unique volume/area values and one or more series of unique volume/area values may be utilized to identify the fuel cell stack part.
摘要:
A method for estimating cathode inlet and cathode outlet relative humidity (RH) of a fuel cell stack. The method uses a model to estimate the high frequency resistance (HFR) of the fuel cell stack based on water specie balance, and also measures stack HFR. The HFR values from the estimated HFR and the measured HFR are compared, and an error between the HFR values is determined. An online regression algorithm is then utilized to minimize the error and the solution of the regression is the RH profile in the stack including the cathode inlet and outlet relative humidities.
摘要:
A system and method for breaking-in and humidifying membrane-electrode-assemblies (MEAs) in a fuel cell stack. The method includes performing voltage cycling and humidification of the MEAs in the stack, including one or more temperature steps wherein current density of the stack is cycled within a predetermined range for each of the one or more temperature steps. The method also includes maintaining a fuel cell stack voltage within a predetermined range, and maintaining anode and cathode reactant flows at an approximate set-point during the current density cycling of the one or more temperature steps to break-in and humidify the MEAs in the stack so that the stack is able to operate at a predetermined threshold for a fuel cell stack voltage output capability.
摘要:
A process for improved performance in a fuel cell or stack of fuel cells wherein the fuel cell has a cathode, an anode, an anode chamber, a cathode chamber, a fuel comprising an anolyte that flows through the cell, and a catholyte gas, and wherein the fuel cell is connected to an external load, and wherein the process comprises taking the load off the cell, and cycling between a minimum voltage and about 50% of the maximum voltage drawn from the fuel cell until a maximum current is reached, or a minimum load and about 50% of the maximum load until a maximum voltage is reached. Fuel cell performance is further enhanced by purging.
摘要:
A novel design and process for: (a) a membrane electrode assembly (MEA) with aligned carbon nanotubes as a nano-scale gas distrubutor which yield better gas conversion efficiencies in PEM fuel cells, and (b) doped silicon flow field plates (FFP) which increase electrode conductivity of the membrane-catalyst-gas diffusion layer (GDL)-FFP interfaces of the proton exchange membrane fuel cell (PEMFC). Also, part of the invention are a stacking configuration and a gas distribution design that also enhance conductivity of carbon/metal catalyst/electrode, GDL, and FFP interface surfaces without crushing the FFPs. Aligned carbon nanoscale gas distributors are employed at the interfaces, thereby increasing the overall performance of th PEMFC. The FFPs are easy to manufacture and mass-producible, yet mechanically sturdy and significantly lighter in weight than their conventional counterparts. Another novel feature of the invention is an integrated monitoring and communication/Internet system located directly or connected to the FFP.
摘要:
Systems and methods for monitoring the isolation resistance of one or more fuel cells are described herein. In one example, a system includes a current transformer having a hollow core. First and second portions of a load line from a fuel cell are located within the hollow core. The first portion of the load line is electrically between an anode of a fuel cell and an electrical load, while the second portion of the load line being electrically between a cathode of the fuel cell and the electrical load. The current transformer is configured to output an electrical signal proportional to a current passing through the hollow core. This electrical signal can then be used to determine the isolation resistance of the fuel cell.
摘要:
A fuel cell vehicle includes a high voltage apparatus for a fuel cell, a compressor for an air conditioner disposed under the high voltage apparatus for the fuel cell and constituting a module integrated with the high voltage apparatus for the fuel cell, and a power control unit separated from the high voltage apparatus for the fuel cell, disposed at a vehicle body over the compressor and configured to control an operation of a motor. The compressor and the high voltage apparatus for the fuel cell are connected by a single power wiring.
摘要:
Systems and methods for detecting and validating a leak in a fuel cell system are presented. In certain embodiments, various fuel cell stack set points may be adjusted such that adequate H2 flow data may be obtained to identify and validate an H2 leak and/or a location of such a leak. In some embodiments, H2 flow data may be obtained by adjusting certain fuel cell system operating parameters under a variety of operating conditions and/or modes and measuring flow data under such various operational conditions.
摘要:
A fuel cell system includes a cathode gas supply unit, a cathode pressure detection unit, a fuel cell temperature detection unit configured to detect a temperature of the fuel cell, an internal resistance detection unit configured to detect an internal resistance of the fuel cell, a target cathode flow rate calculation unit configured to calculate a target cathode flow rate necessary for supply to the fuel cell based on an operating state of the fuel cell system, a cathode flow rate estimation unit configured to estimate a flow rate of the cathode gas according to the pressure of the cathode gas, the temperature of the fuel cell and the internal resistance of the fuel cell, and a cathode flow rate control unit configured to control the cathode gas supply unit based on the target cathode flow rate and the estimated flow rate of the cathode gas.
摘要:
A system and method for controlling a power storage device through the Stimulation and Intensification of Interfacial Processes (SIIP) is provided. A signal generator can provide a low voltage sinusoidal AC signal across a battery terminal, or other reactor vessel, during charging and discharging states. For example, the battery/reactor vessel can be of Li-ion and NiMH designs, a fuel cell, a Zn—O cell, or other devices that have features of rechargeable batteries. The output of the signal generator (i.e., voltage, wave type, and frequency) can be controlled based on battery parameters (e.g., internal resistance, output power, temperature). The internal resistance of the battery can be reduced, and the discharge time can be increased. Elastic waves can also be provided to a battery/reactor vessel to stimulate the interfacial processes. The signal generator can be an integrated circuit which is packaged with the battery and can be powered by the battery.