Abstract:
A skid steer vehicle has sprung suspensions, variable displacement pumps and motors connected to those pumps that drive the wheels on the vehicle as well as an electronic controller that receives signals that indicate fore-and-aft acceleration of the skid steer vehicle. Based on these signals, the controller determines whether the forward acceleration exceeds a predetermined value and locks up the rear suspensions if that value is exceeded. It also determines whether the forward deceleration exceeds a predetermined value and locks up the front suspensions if that value is exceeded. The signals can be provided by an accelerometer, a satellite receiver, wheel/motor speed sensors, sensors in the pumps that signal the specific displacement of the pumps such as their swash plate positions, or memory locations that contain previously calculated specific displacement commands that are used to drive the pumps to a particular specific displacement.
Abstract:
A skid steer loader has a chassis with spring-loaded suspensions that are pivotally coupled to the chassis closer to the center of gravity than the wheels. The suspensions include fore-and-aft extending swing arms that pivot about a lateral axis with respect to the chassis. A torsion spring such as a torsion bar is coupled to the control arm to provide torsional support for the suspension. The torsion spring is anchored to the chassis nearer the center of gravity than the point where the swing arm is coupled to the chassis.
Abstract:
A drive assembly for a cotton harvester with harvesting units mounted for vertical movement about a fixed axis and for lateral movement across a front end of the harvester. The drive assembly includes a harvesting unit drive section and a transmission section which are driven by a common power input. The harvesting unit drive section includes an upright fluidically sealed housing with an output shaft assembly and a pair of modular drive units supported and connected to the housing at opposite ends of the output shaft assembly. An elongated modular support connects at least one of the drive units to the housing to optimize the lateral location of the driving units and thereby maximizing transfer of rotary power through the harvesting unit drive section.
Abstract:
A skid steer vehicle has a chassis with four drive wheels suspended from the chassis that are damped by four damping cylinders. An electronic controller varies the damping of the cylinders in an automatic mode, based on certain operational parameters of the vehicle, and in a manual mode in response to operator selection of a desired degree of suspension damping.
Abstract:
A skid steer vehicle is supported on four gearboxes that function both as control arms and as speed reduction gearboxes. Each side of the vehicle's chassis has two gearboxes to which it is coupled. A hydraulic motor is fixed to each side of the chassis to drive the gearboxes on that side. The motors are arranged such that their drive shafts extend longitudinally along the chassis, with a front shaft engaging the front gearbox and a rear shaft engaging the rear gearbox. The gearboxes include three speed-reducing right angle gear sets coupling an axle extending from the gearbox to the motor driving that gearbox.
Abstract:
A skid steer vehicle includes a chassis mounted on four sprung suspensions that are controlled by an electronic controller. The controller monitors the speed of the vehicle and locks the suspensions when the vehicle falls below a predetermined speed.
Abstract:
A skid steer vehicle has a drive system that includes hydraulic motor coupled to a reduction gearbox. A driveshaft extends fore-and-aft from the gearbox and is coupled at each end to a combined housing including a reduction gear set and an axle. The axle extends laterally outward from the vehicle and a wheel is fixed to its outer end. There are two housings on either end of the driveshaft. There are two such drive systems on the vehicle, one on either side. Thus the vehicle has two separate drive systems, each capable of independently driving two wheels on opposing sides of the vehicle.
Abstract:
A skid steer vehicle has a suspension that includes two bogies pivotally connected to the sides of the vehicle and extending fore-and-aft along each side of the vehicle. The bogies are pivotally connected to the vehicle in the middle and have a wheel mounted at each end. A hydraulic motor is coupled to each of the bogies and drives the two wheels on each bogie.
Abstract:
A skid steer vehicle has a drive system that includes a hydraulic motor coupled to a speed-reduction gearbox. One or more drive shafts extend fore-and-aft from the gearbox and are coupled at each end to two axle housings. Each axle housing includes two reduction gear sets and an axle. Each of the axles extends outward from the vehicle and a wheel is fixed to its outer end. A spur gear on a parallel shaft inside the axle housing engages a spur gear on the axle and drives it to provide one gear reduction. A bevel gear in the axle housing engages a bevel gear on the parallel shaft to provide another gear reduction. The vehicle has a drive system located on each side of the vehicle to collectively drive four wheels.
Abstract:
A skid steer vehicle has a sprung suspension system including four wheels mounted on four swing arms that are pivotally coupled to the chassis of the vehicle. An electronic controller is connected both to position sensors coupled to the swing arms to sense the position of the swing arms and wheels with respect to the chassis and also to hydraulic cylinders that control the position of the swing arms and wheels. The electronic controller determines the average position of each suspension and controls the flow of fluid to the cylinders to keep the swing arms and wheels at their proper target height when vehicle load changes.