Method of forming a barrier layer of a tunneling magnetoresistive sensor
    2.
    发明授权
    Method of forming a barrier layer of a tunneling magnetoresistive sensor 失效
    形成隧道磁阻传感器的阻挡层的方法

    公开(公告)号:US06841395B2

    公开(公告)日:2005-01-11

    申请号:US10304841

    申请日:2002-11-25

    摘要: A fabrication process for a tunneling magnetoresistance (TMR) sensor is disclosed. In particular, a unique method of forming a barrier layer of the TMR sensor is utilized so that the TMR sensor exhibits good magnetic and TMR properties. In one particular example, the barrier layer is formed by depositing a metallic film in an argon gas in a DC magnetron sputtering module, depositing an oxygen-doped metallic film in mixed xenon and oxygen gases in an ion-beam sputtering module, and oxidizing these films in an oxygen gas in an oxygen treatment module. This three-step barrier layer formation process minimizes oxygen penetration into ferromagnetic (FM) sense and pinned layers of the TMR sensor and optimally controls oxygen doping into the barrier layer. As a result, the FM sense and pinned layers exhibit controlled magnetic properties, the barrier layer provides a low junction resistance-area product, and the TMR sensor exhibits a high TMR coefficient.

    摘要翻译: 公开了一种用于隧道磁阻(TMR)传感器的制造工艺。 特别地,使用形成TMR传感器的阻挡层的独特方法,使得TMR传感器表现出良好的磁性和TMR性质。 在一个具体实例中,阻挡层通过在直流磁控溅射模块中在氩气中沉积金属膜,在离子束溅射模块中将掺杂氧的金属膜沉积在混合的氙气和氧气中形成,并氧化这些 氧气处理模块中的氧气膜。 这种三步势垒层形成过程使氧渗透到TMR传感器的铁磁(FM)感测和固定层中,并且最佳地控制氧阻挡层中的氧掺杂。 结果,FM感测和钉扎层表现出受控的磁性能,阻挡层提供低结电阻面积积,TMR传感器表现出高TMR系数。

    Magnetic tunnel junction memory cell with in-stack biasing of the free
ferromagnetic layer and memory array using the cell
    3.
    发明授权
    Magnetic tunnel junction memory cell with in-stack biasing of the free ferromagnetic layer and memory array using the cell 失效
    磁性隧道结存储单元,其具有自由铁磁层的堆叠偏置和使用该单元的存储器阵列

    公开(公告)号:US6114719A

    公开(公告)日:2000-09-05

    申请号:US87553

    申请日:1998-05-29

    IPC分类号: G11C11/15 H01L29/76

    摘要: A magnetic tunnel junction (MTJ) memory cell uses a biasing ferromagnetic layer in the MTJ stack of layers that is magnetostatically coupled with the free ferromagnetic layer in the MTJ stack to provide transverse and/or longitudinal bias fields to the free ferromagnetic layer. The MTJ is formed on an electrical lead on a substrate and is made up of a stack of layers. The layers in the MTJ stack are an antiferromagnetic layer, a fixed ferromagnetic layer exchange biased with the antiferromagnetic layer so that its magnetic moment cannot rotate in the presence of an applied magnetic field, an insulating tunnel barrier layer in contact with the fixed ferromagnetic layer, a free ferromagnetic layer in contact with the tunnel barrier layer and whose magnetic moment is free to rotate in the presence of an applied magnetic field, and whose moment, in the absence of any applied field, is generally either parallel or antiparallel to that of the fixed ferromagnetic layer, a biasing ferromagnetic layer that has its magnetic moment aligned generally in the plane of the MTJ, and a nonferromagnetic electrically conductive spacer layer separating the biasing ferromagnetic layer from the other layers in the stack. The self field or demagnetizing field from the biasing layer magnetostatically couples with the edges of the free layer so as to provide a transverse bias field, which results in a coherent rotation of the moment of the free layer, and/or a longitudinal bias field, which assures that the two states of the memory cell are equally stable with respect to magnetic field excursions.

    摘要翻译: 磁性隧道结(MTJ)存储单元使用与MTJ堆叠中的自由铁磁层磁静电耦合的MTJ堆叠层中的偏置铁磁层,以向自由铁磁层提供横向和/或纵向偏置场。 MTJ形成在基板上的电引线上,并且由一叠层组成。 MTJ堆叠中的层是反铁磁层,固定的铁磁层与反铁磁层交替偏置,使得其在施加的磁场存在的情况下不能旋转,与固定铁磁层接触的绝缘隧道势垒层, 与隧道势垒层接触的自由铁磁层,其磁矩在施加的磁场的存在下自由旋转,并且其在没有任何施加磁场的情况下的时刻通常是平行或反平行的 固定铁磁层,其磁矩大致在MTJ的平面内的偏置铁磁层,以及将偏置铁磁层与堆叠中的其它层分离的非铁磁导电间隔层。 来自偏置层的自场或去磁场与自由层的边缘静磁耦合,以便提供横向偏置场,这导致自由层的力矩和/或纵向偏置场的相干旋转, 这确保了存储器单元的两个状态相对于磁场偏移同样稳定。