Abstract:
A vaporizer for generating a process gas from a liquid material includes a container defining a process space of the vaporizer, and an injector having a spray port configured to spray the liquid material in an atomized state downward in the container. A lower block is disposed below the spray port inside the container such that a run-up space for the atomized liquid material is defined between the spray port and the lower block, and an annular space continuous to the run-up space is defined between an inner surface of the container and the lower block. First and second heaters are respectively provided to the container and the lower block, and configured to heat the atomized liquid material flowing through the annular space to generate the process gas. A gas delivery passage is connected to the container to output the process gas from the annular space.
Abstract:
A vaporizer for generating a process gas from a liquid material includes a heat-exchange lower block having a hollow internal space and disposed below the spray port of an injector inside the container. A run-up space for the atomized liquid material is defined between the spray port and the heat-exchange lower block, and an annular space continuous to the run-up space is defined between an inner surface of the container and the heat-exchange lower block. An internal heater is disposed in the internal space of the heat-exchange lower block and includes a carbon wire formed of woven bundles of carbon fibers and sealed in a ceramic envelope. The internal heater is configured to heat the atomized liquid material flowing through the annular space to generate the process gas.
Abstract:
A method for using a film formation apparatus for a semiconductor process forms a first atmosphere inside an upstream gas passage between a gas supply source of a halogen acidic gas and a flow rate controller. The first atmosphere is set for the halogen acidic gas to have an average molecular weight of 20 or more and 23 or less. Further, the using method supplies the halogen acidic gas from the gas supply source through the upstream gas passage having the first atmosphere thus formed and the flow rate controller, thereby supplying a cleaning gas containing the halogen acidic gas into a reaction chamber of the film formation apparatus. A by-product film deposited on an inner surface of the reaction chamber is etched and removed by use of the cleaning gas thus supplied.
Abstract:
Zero point shift based on thermal siphon effect occurring actually when a substrate is processed is detected accurately and corrected suitably. The semiconductor fabrication system comprises a gas supply passage (210) for supplying gas into a heat treatment unit (110), an MFC (240) for comparing an output voltage from a detecting unit for detecting the gas flow rate of the gas supply passage with a set voltage corresponding to a preset flow rate and controlling the gas flow rate of the gas supply passage to the set flow rate, and a control unit (300). The control unit replaces gas in the MFC by gas which is to be used at least for processing a substrate before the substrate is processed, detects the output voltage from the MFC under a state where valves (230, 250) provided in the upstream and the downstream of the MFC are closed and stores the detected output voltage in a storage unit, corrects the set voltage corresponding to the flow rate of gas to be used for processing the substrate based on the output voltage from the MFC stored in the storage unit at the time of processing the substrate, and sets the corrected set voltage in the MFC.
Abstract:
A semiconductor manufacturing apparatus according to the present invention comprises: a treating unit that treats a substrate to manufacture thereon a semiconductor device; a fluid supplying channel for supplying a fluid required for a treatment of the substrate to the treating unit; a set voltage outputting unit that outputs a set voltage corresponding to a set flow volume of the fluid; a massflow controller disposed on the fluid supplying channel, that controls a flow volume of the fluid based on the set voltage; a first shut-off valve disposed on the fluid supplying channel on an upstream side of the massflow controller; and a second shut-off valve disposed on the fluid supplying channel on a downstream side of the massflow controller. The massflow controller includes: a detecting unit that detects an actual flow volume of the fluid and outputs a corresponding detected voltage; a comparing unit that compares the set voltage with the detected voltage to output an operation signal; and a flow volume adjusting unit that adjusts the flow volume of the fluid based on the operation signal. A storing unit is provided, that stores the detected voltage outputted from the detecting unit of the massflow controller, when the first and the second shut-off valves are closed. A set voltage correcting unit is provided, that corrects the set voltage based on the detected voltage stored in the storing unit, in such a manner that a drift of the detected voltage is compensated when an actual flow volume of the fluid is zero.
Abstract:
A liquid raw material supply unit for a vaporizer is adapted to supply a liquid raw material to the vaporizer that vaporizes the liquid raw material. The unit comprises: a manifold internally formed with a flow passage; and a plurality of fluid control valves mounted on the manifold, wherein the plurality of fluid control valves includes: a liquid raw material control valve for controlling supply of the liquid raw material to the flow passage; a cleaning solution control valve for controlling supply of a cleaning solution to the flow passage; a purge gas control valve for controlling supply of a purge gas to the flow passage; and a first introducing control valve connectable to the vaporizer for controlling supply of a fluid from the flow passage to the vaporizer, the purge gas control valve, the cleaning solution control valve, the liquid raw material control valve, and the first introducing control valve being mounted on the manifold in this order from an upstream side of the manifold, wherein the flow passage is connected to valve ports of the plurality of control valves respectively, the valve ports communicating with valve openings of the respective control valves, and the flow passage is configured to allow the purge gas supplied from the purge gas control valve to directly flow in the valve ports of the cleaning solution control valve and the liquid raw material control valve placed downstream from the purge gas control valve.
Abstract:
Shutoff valves are placed in parts of the process gas supply lines at positions near the processing vessel. A main purge gas supply line branches into branch purge gas supply lines, each of which is provided with an orifice called sonic nozzle. The branch purge gas supply lines are connected to parts of the process gas supply lines extending between the shutoff valves and the processing vessel. The ratio P1/P2, where P1 is primary pressure on the primary side of the orifice and P2 is secondary pressure on the secondary side of the orifice, is controlled to be not less than a predetermined value, for example, two, thereby, the purge gas can always be supplied at equal flow rates into the process gas supply lines. The total flow rate of the purge gas is controlled by a mass flow controller placed in the main purge gas supply line.
Abstract:
Lower members of each of lines A, B, C, D, E, P are mounted on a subbase panel 3 with screws, upper members 11, 12, 13, 14, 15, 16, 17, 18, 19 of each line are mounted on the lower members with screws, and the subbase panels 3 is mounted on a single main base panel 2. Channel connecting element 50 is removable upward.
Abstract:
A disclosed gas supplying apparatus includes a pressure controller that reduces a primary pressure thereby providing a secondary pressure greater than a process pressure at which a predetermined process is performed and less than the atmospheric pressure in a secondary pipe; a pressure sensor that measures a pressure in the secondary pipe; a first open/close valve provided in the secondary pipe; an open/close valve controller that opens or closes the first open/close valve; a pressure comparator that compares the pressure measured by the pressure sensor in the secondary pipe with a first set pressure that is greater than the process pressure by a predetermined pressure; and a controller that outputs a signal to the open/close valve controller thereby closing the first open/close valve, when the pressure comparator determines that the pressure in the secondary pipe is less than the first set pressure.
Abstract:
A method is used for removing a metal contaminant deposited on a quartz member selected from the group consisting of a reaction tube, wafer boat, and heat-insulating cylinder of a vertical heat processing apparatus for a semiconductor process. The method includes obtaining the quartz member unattached to the vertical heat processing apparatus; then, performing diluted hydrofluoric acid cleaning of cleaning the quartz member by use of diluted hydrofluoric acid; then, performing first purified water cleaning of cleaning the quartz member by use of purified water; then, performing hydrochloric acid cleaning of cleaning the quartz member by use of hydrochloric acid; and then, performing second purified water cleaning of cleaning the quartz member by use of purified water.