Abstract:
A film formation apparatus for a semiconductor process for forming a thin film on a target object by use of first and second reactive gases includes a vacuum container, an exhaust system, a rotary table configured to place the target object thereon, a rotating mechanism configured to rotate the rotary table, and a temperature adjusting mechanism configured to set the target object to a temperature at which the first reactive gas is condensed. Inside the vacuum container, a first reactive gas supply section configured to adsorb a condensed substance of the first reactive gas onto the target object, a vaporizing section configured to partly vaporize the condensed substance, and a second reactive gas supply section configured to cause the second reactive gas to react with the condensed substance are disposed in this order in a rotational direction of the rotary table.
Abstract:
A film deposition apparatus includes a turntable provided in the chamber and having on a first surface a substrate receiving area in which a substrate is placed; first and second reaction gas supplying portions supplying first and second reaction gases to the first surface, respectively; a separation gas supplying portion provided between the first reaction gas supplying portion and the second reaction gas supplying portion and supplying a separation gas that separates the first reaction gas and the second reaction gas; an evacuation port that evacuates the chamber; a space defining member provided for at least one of the first and second reaction gas supplying portions and defining a first space between the at least one of the first and second reaction gas supplying portions and the turntable and a second space so that the separation gas is likely to flow through the second space rather than the first space.
Abstract:
A vacuum chamber is evacuated through a first evacuation passage provided with a first valve and a second evacuation passage provided with a second valve. An opening degree of the first valve is adjusted so that a pressure in the vacuum chamber becomes substantially equal to a process pressure P; an opening degree of a butterfly valve further provided in the second evacuation passage is adjusted to substantially equal to a set value determined by a table in order to set flow rates of gases to be evacuated through the first evacuation passage and the second evacuation passage to be substantially equal to corresponding set values determined by the recipe; and an opening degree of the second valve is adjusted so that a measurement value of a differential pressure gauge further provided in the second evacuation passage becomes substantially equal to a differential pressure written in the table.
Abstract:
There is disclosed a film deposition apparatus and a film deposition method for depositing a film on a substrate by carrying out cycles of supplying in turn at least two source gases to the substrate in order to form a layer of a reaction product, and a computer readable storage medium storing a computer program for causing the film deposition apparatus to carry out the film deposition method.
Abstract:
A vacuum chamber is evacuated through a first evacuation passage provided with a first valve and a second evacuation passage provided with a second valve. An opening degree of the first valve is adjusted so that a pressure in the vacuum chamber becomes substantially equal to a process pressure P; an opening degree of a butterfly valve further provided in the second evacuation passage is adjusted to substantially equal to a set value determined by a table in order to set flow rates of gases to be evacuated through the first evacuation passage and the second evacuation passage to be substantially equal to corresponding set values determined by the recipe; and an opening degree of the second valve is adjusted so that a measurement value of a differential pressure gauge further provided in the second evacuation passage becomes substantially equal to a differential pressure written in the table.
Abstract:
A method is used for removing a metal contaminant deposited on a quartz member selected from the group consisting of a reaction tube, wafer boat, and heat-insulating cylinder of a vertical heat processing apparatus for a semiconductor process. The method includes obtaining the quartz member unattached to the vertical heat processing apparatus; then, performing diluted hydrofluoric acid cleaning of cleaning the quartz member by use of diluted hydrofluoric acid; then, performing first purified water cleaning of cleaning the quartz member by use of purified water; then, performing hydrochloric acid cleaning of cleaning the quartz member by use of hydrochloric acid; and then, performing second purified water cleaning of cleaning the quartz member by use of purified water.
Abstract:
There is disclosed a film deposition apparatus and a film deposition method for depositing a film on a substrate by carrying out cycles of supplying in turn at least two source gases to the substrate in order to form a layer of a reaction product, and a computer readable storage medium storing a computer program for causing the film deposition apparatus to carry out the film deposition method.
Abstract:
A film deposition apparatus includes a turntable provided in the chamber and having on a first surface a substrate receiving area in which a substrate is placed; first and second reaction gas supplying portions supplying first and second reaction gases to the first surface, respectively; a separation gas supplying portion provided between the first reaction gas supplying portion and the second reaction gas supplying portion and supplying a separation gas that separates the first reaction gas and the second reaction gas; an evacuation port that evacuates the chamber; a space defining member provided for at least one of the first and second reaction gas supplying portions and defining a first space between the at least one of the first and second reaction gas supplying portions and the turntable and a second space so that the separation gas is likely to flow through the second space rather than the first space.
Abstract:
A method is used for removing a metal contaminant deposited on a quartz member selected from the group consisting of a reaction tube, wafer boat, and heat-insulating cylinder of a vertical heat processing apparatus for a semiconductor process. The method includes obtaining the quartz member unattached to the vertical heat processing apparatus; then, performing diluted hydrofluoric acid cleaning of cleaning the quartz member by use of diluted hydrofluoric acid; then, performing first purified water cleaning of cleaning the quartz member by use of purified water; then, performing hydrochloric acid cleaning of cleaning the quartz member by use of hydrochloric acid; and then, performing second purified water cleaning of cleaning the quartz member by use of purified water.
Abstract:
A film deposition apparatus rotates a turntable and each gas nozzle relatively to each other at a rotational speed of 100 rpm or higher when depositing a titanium nitride film, to speed up a reaction gas supply cycle or a film deposition cycle of a reaction product. A next film of the reaction product is deposited before the grain size of the reaction product already generated on a substrate surface begins to grow due to crystallization of the already generated reaction product.