Abstract:
In a method for honing a bore having first and second sections sequentially arranged in an axial direction of the bore, wherein the first section is hardened so that the first and second sections have different hardness, a honing tool is radially supported by positioning guides of the honing tool on the second bore section. first section is machined with honing stones arranged on the honing tool to remove material from the first section. During machining of the first section, the honing tool is expanded by feeding the honing stones according to a defined feeding mode against a surface of the first section by a force-guided electro-mechanical advancement. During machining of the first section, the working stroke of the honing tool is adjusted continuously at least toward the end of the honing process. Feeding of the guides is realized independently of feeding of the honing stones.
Abstract:
In a method for honing a bore having first and second sections sequentially arranged in an axial direction of the bore, wherein the first section is hardened so that the first and second sections have different hardness, a honing tool is radially supported by positioning guides of the honing tool on the second bore section first section is machined with honing stones arranged on the honing tool to remove material from the first section. During machining of the first section, the honing tool is expanded by feeding the honing stones according to a defined feeding mode against a surface of the first section by a force-guided electro-mechanical advancement. During machining of the first section, the working stroke of the honing tool is adjusted continuously at least toward the end of the honing process. Feeding of the guides is realized independently of feeding of the honing stones.
Abstract:
Method for frictionally connecting the front surfaces of two machine components (1′, 2″; 2′, 3″; 3′, 4″) for transmitting high torques or transverse forces, wherein elevations (20) are provided on one (1′, 2′, 3′) of the surfaces (1′, 2″; 2′, 3″; 3′, 4″) to be connected, which are harder than the material of the other surface.
Abstract:
A connecting rod (1) has a small connecting rod eye (2) and a large connecting rod eye (3). A bearing shell (4, 5) is disposed in at least one connecting rod eye (2, 3), wherein the bearing shell (4, 5) is held in the connecting rod eye (2, 3) for secure mutual rotation therewith. To obtain good adhesion of the bearing shell (4, 5) in the connecting rod eye (2, 3), the bore surface (12, 13) in one connecting rod eye (2, 3) and/or the outer surface of a bearing shell (4, 5) has/have a structure (6, 7, 24, 26, 28, 30, 32, 34, 37, 38), wherein the structure (6, 7, 24, 26, 28, 30, 32, 34, 37, 38) is formed by elevations (9), the elevations (9) delimiting the outer periphery of depressions (8). In a method for producing a connecting rod (1) comprising at least one connecting rod eye (2, 3) with a structured surface (12, 13), wherein a bearing shell (4, 5) is disposed in the connecting rod eye (2, 3) after structuring of the surface, the surface (12, 13) is structured with a laser.
Abstract:
In a method for machining bores of workpieces with a desired nominal shape of the bores in operative condition, a bore with a desired nominal shape in inoperative condition is produced in a workpiece and the workpiece is then put in operative condition. A deviation of the desired nominal shape of the bore resulting from the operative conditions is determined. Based on the deviation, an initial shape which shape the bore must have in inoperative condition in order for the bore to assume the desired nominal shape in operative condition is the determined. Bores are then produced by employing the determined initial shape as a template.
Abstract:
Method for frictionally connecting the front surfaces of two machine components (1′, 2″; 2′, 3″; 3′, 4″) for transmitting high torques or transverse forces, wherein elevations (20) are provided on one (1′, 2′, 3′) of the surfaces (1′, 2″; 2′, 3″; 3′, 4″) to be connected, which are harder than the material of the other surface.
Abstract:
In a method for machining bores of workpieces with a desired nominal shape of the bores in operative condition, a bore with a desired nominal shape in inoperative condition is produced in a workpiece and the workpiece is then put in operative condition. A deviation of the desired nominal shape of the bore resulting from the operative conditions is determined. Based on the deviation, an initial shape which shape the bore must have in inoperative condition in order for the bore to assume the desired nominal shape in operative condition is the determined. Bores are then produced by employing the determined initial shape as a template.
Abstract:
A device for grinding an end face at an edge of a workpiece bore of a workpiece has a driven grinding tool and a guide pin, connected to the grinding tool, for insertion into the workpiece. The guide pin is dimensioned so as to precisely match the workpiece bore. The guide pin has a central axis. The grinding tool has a grinding surface extending angularly to the central axis. The grinding tool is periodically displaceable transverse to the central axis.
Abstract:
The method of fine-machining a workpiece surface to be supplied with a lubricant during operation of the workpiece includes the steps of subjecting the workpiece surface to a stream of a medium to produce linearly extending channels of a predetermined first depth in the workpiece surface, the linearly extending channels defining areas therebetween, and forming in the areas by subjecting the workpiece surface to a stream of a medium grooves of a second depth smaller than the predetermined first depth. The linearly extending channels may be arranged in a crossed arrangement. Preferably, the method is carried out as a two-step process. Expediently the method further includes the step of employing a laser for at least one of the steps. The laser can form the channels with dimple shaped depressions positioned in a row.
Abstract:
A method and tool for machining the surfaces of workpieces. The surface is finished by honing high pressure fluid jetting, and brushing. The tool used in this connection is provided with at least one tool element, such as a honing bar and/or a brush bar, and at least one spray or jetting mechanism.