摘要:
An electronic device can include a first semiconductor portion and a second semiconductor portion, wherein the compositions of the first and second semiconductor portions are different from each other. In one embodiment, the first and second semiconductor portions can have different stresses compared to each other. In one embodiment, the electronic device may be formed by forming an oxidation mask over the first semiconductor portion. A second semiconductor layer can be formed over the second semiconductor portion of the first semiconductor layer and have a different composition compared to the first semiconductor layer. An oxidation can be performed, and a concentration of a semiconductor element (e.g., germanium) within the second portion of the first semiconductor layer can be increased. In another embodiment, a selective condensation may be performed, and a field isolation region can be formed between the first and second portions of the first semiconductor layer.
摘要:
A semiconductor fabrication process preferably used with a semiconductor on insulator (SOI) wafer. The wafer's active layer is biaxially strained and has first and second regions. The second region is amorphized to alter its strain component(s). The wafer is annealed to re-crystallize the amorphous semiconductor. First and second types of transistors are fabricated in the first region and the second region respectively. Third and possibly fourth regions of the active layer may be processed to alter their strain characteristics. A sacrificial strain structure may be formed overlying the third region. The strain structure may be a compressive. When annealing the wafer with the strain structure in place, its strain characteristics may be mirrored in the third active layer region. The fourth active layer region may be amorphized in stripes that run parallel to a width direction of the transistor strain to produce uniaxial stress in the width direction.
摘要:
An electronic device can include a first semiconductor portion and a second semiconductor portion, wherein the compositions of the first and second semiconductor portions are different from each other. In one embodiment, the first and second semiconductor portions can have different stresses compared to each other. In one embodiment, the electronic device may be formed by forming an oxidation mask over the first semiconductor portion. A second semiconductor layer can be formed over the second semiconductor portion of the first semiconductor layer and have a different composition compared to the first semiconductor layer. An oxidation can be performed, and a concentration of a semiconductor element (e.g., germanium) within the second portion of the first semiconductor layer can be increased. In another embodiment, a selective condensation may be performed, and a field isolation region can be formed between the first and second portions of the first semiconductor layer.
摘要:
An impurity can be introduced into a semiconductor layer of a workpiece to affect the oxidation and the relative concentration of one element with respect to another element within the semiconductor layer. The impurity can be selectively implanted using one or more masks, manipulating the beam line of an ion implant tool, moving a workpiece relative to the ion beam, or the like. The dose can vary as a function of distance from the center of the workpiece or vary locally based on the design of the electronic device or desires of the electronic device fabricator. In one embodiment, the impurity can be implanted in such a way as to result in a more uniform SiGe condensation across the substrate or across one or more portions of the substrate when the semiconductor layer includes a SiGe layer.
摘要:
A semiconductor device is provided which comprises a semiconductor layer (109), a dielectric layer (111), first and second gate electrodes (129, 131) having first and second respective work functions associated therewith, and a layer of hafnium oxide (113) disposed between said dielectric layer and said first and second gate electrodes.
摘要:
A semiconductor device is provided which comprises a semiconductor layer (109), a dielectric layer (111), first and second gate electrodes (129, 131) having first and second respective work functions associated therewith, and a layer of hafnium oxide (113) disposed between said dielectric layer and said first and second gate electrodes.
摘要:
An electronic device can have an insulating layer lying between a first semiconductor layer and a base layer. A second semiconductor layer, having a different composition and stress as compared to the first semiconductor layer, can overlie at least a portion of the first semiconductor layer. In one embodiment, a first electronic component can include a first active region that includes a first portion of the first and the second semiconductor layers. A second electronic component can include a second active region that can include a second portion of the first semiconductor layer. Different processes can be used to form the electronic device. In another embodiment, annealing a workpiece can be performed and the stress of at least one of the semiconductor layers can be changed. In a different embodiment, annealing the workpiece can be performed either before or after the formation of the second semiconductor layer.
摘要:
A semiconductor device (10) is formed by positioning a gate (22) overlying a semiconductor layer (16) of preferably silicon. A semiconductor material (26) of, for example only, SiGe or Ge, is formed adjacent the gate over the semiconductor layer and over source/drain regions. A thermal process diffuses the stressor material into the semiconductor layer. Lateral diffusion occurs to cause the formation of a strained channel (17) in which a stressor material layer (30) is immediately adjacent the strained channel. Extension implants create source and drain implants from a first portion of the stressor material layer. A second portion of the stressor material layer remains in the channel between the strained channel and the source and drain implants. A heterojunction is therefore formed in the strained channel. In another form, oxidation of the stressor material occurs rather than extension implants to form the strained channel.
摘要:
A semiconductor device (10) is formed by positioning a gate (22) overlying a semiconductor layer (16) of preferably silicon. A semiconductor material (26) of, for example only, SiGe or Ge, is formed adjacent the gate over the semiconductor layer and over source/drain regions. A thermal process diffuses the stressor material into the semiconductor layer. Lateral diffusion occurs to cause the formation of a strained channel (17) in which a stressor material layer (30) is immediately adjacent the strained channel. Extension implants create source and drain implants from a first portion of the stressor material layer. A second portion of the stressor material layer remains in the channel between the strained channel and the source and drain implants. A heterojunction is therefore formed in the strained channel. In another form, oxidation of the stressor material occurs rather than extension implants to form the strained channel.
摘要:
An electronic device can include a first semiconductor portion and a second semiconductor portion, wherein the compositions of the first and second semiconductor portions are different from each other. In one embodiment, the first and second semiconductor portions can have different stresses compared to each other. In one embodiment, the electronic device may be formed by forming an oxidation mask over the first semiconductor portion. A second semiconductor layer can be formed over the second semiconductor portion of the first semiconductor layer and have a different composition compared to the first semiconductor layer. An oxidation can be performed, and a concentration of a semiconductor element (e.g., germanium) within the second portion of the first semiconductor layer can be increased. In another embodiment, a selective condensation may be performed, and a field isolation region can be formed between the first and second portions of the first semiconductor layer.