摘要:
A method for forming a shared contact in a semiconductor device having a gate electrode corresponding to a first transistor and a source/drain region corresponding to a second transistor is provided. The method includes forming a first opening in a dielectric layer overlying the gate electrode and the source/drain region, wherein the first opening extends substantially to the gate electrode corresponding to the first transistor. The method further includes after forming the first opening, forming a second opening, contiguous with the first opening, in the overlying dielectric layer, wherein the second opening extends substantially to the source/drain region corresponding to the second transistor. The method further includes forming the shared contact between the gate electrode corresponding to the first transistor and the source/drain region corresponding to the second transistor by filling the first opening and the second opening with a conductive material.
摘要:
Embodiments include a split-gate non-volatile memory cell that is formed having a control gate and a select gate, where at least a portion of the control gate is formed over the select gate. A charge storage layer is formed between the select gate and the control gate. The select gate is formed using a first conductive layer and a second conductive layer. The second conductive layer is formed over the first conductive layer and has a lower resistivity than the first conductive layer. In one embodiment, the first conductive layer is polysilicon and the second conductive layer is titanium nitride (TiN). In another embodiment, the second conductive layer may be a silicide or other conductive material, or combination of conductive materials having a lower resistivity than the first conductive layer.
摘要:
A method for forming a split-gate non-volatile memory (NVM) cell includes forming a first gate layer over a semiconductor substrate; forming a conductive layer over the first gate layer; patterning the first gate layer and the conductive layer to form a first sidewall, wherein the first sidewall comprises a sidewall of the first gate layer and a sidewall of the conductive layer; forming a first dielectric layer over the conductive layer and the semiconductor substrate, wherein the first dielectric layer overlaps the first sidewall; forming a second gate layer over the first dielectric layer, wherein the second gate layer is formed over the conductive layer and the first gate layer and overlaps the first sidewall; and patterning the first gate layer and the second gate layer to form a first gate and a second gate, respectively, of the split-gate NVM cell, wherein the second gate overlaps the first gate and a portion of the conductive layer remains between the first gate and the second gate.
摘要:
A transistor having a source with higher resistance than its drain is optimal as a pull-up device in a storage circuit. The transistor has a source region having a source implant having a source resistance. The source region is not salicided. A control electrode region is adjacent the source region for controlling electrical conduction of the transistor. A drain region is adjacent the control electrode region and opposite the source region. The drain region has a drain implant that is salicided and has a drain resistance. The source resistance is more than the drain resistance because the source region having a physical property that differs from the drain region.
摘要:
A semiconductor process and apparatus provide a shallow trench isolation region (96) with a trench liner (95, 104) for use in a hybrid substrate device (21) by lining a first trench with a first trench liner (95), and then lining a second trench formed within the first trench by depositing a second trench liner (104) that is anisotropically etched to expose an underlying substrate (70) on which is epitaxially grown a silicon layer (110) to fill the second trench. By forming first gate electrodes (251) over a first SOI substrate (90) using deposited (100) silicon and forming second gate electrodes (261) over an epitaxially grown (110) silicon substrate (110), a high performance CMOS device is obtained which includes high-k metal PMOS gate electrodes (261) having improved hole mobility.
摘要:
A transistor having a source with higher resistance than its drain is optimal as a pull-up device in a storage circuit. The transistor has a source region having a source implant having a source resistance. The source region is not salicided. A control electrode region is adjacent the source region for controlling electrical conduction of the transistor. A drain region is adjacent the control electrode region and opposite the source region. The drain region has a drain implant that is salicided and has a drain resistance. The source resistance is more than the drain resistance because the source region having a physical property that differs from the drain region.
摘要:
An electronic device can include a first semiconductor portion and a second semiconductor portion, wherein the compositions of the first and second semiconductor portions are different from each other. In one embodiment, the first and second semiconductor portions can have different stresses compared to each other. In one embodiment, the electronic device may be formed by forming an oxidation mask over the first semiconductor portion. A second semiconductor layer can be formed over the second semiconductor portion of the first semiconductor layer and have a different composition compared to the first semiconductor layer. An oxidation can be performed, and a concentration of a semiconductor element (e.g., germanium) within the second portion of the first semiconductor layer can be increased. In another embodiment, a selective condensation may be performed, and a field isolation region can be formed between the first and second portions of the first semiconductor layer.
摘要:
Two different transistors types are made on different crystal orientations in which both are formed on SOI. A substrate has an underlying semiconductor layer of one of the crystal orientations and an overlying layer of the other crystal orientation. The underlying layer has a portion exposed on which is epitaxially grown an oxygen-doped semiconductor layer that maintains the crystalline structure of the underlying semiconductor layer. A semiconductor layer is then epitaxially grown on the oxygen-doped semiconductor layer. An oxidation step at elevated temperatures causes the oxide-doped region to separate into oxide and semiconductor regions. The oxide region is then used as an insulation layer in an SOI structure and the overlying semiconductor layer that is left is of the same crystal orientation as the underlying semiconductor layer. Transistors of the different types are formed on the different resulting crystal orientations.
摘要:
A semiconductor fabrication process includes forming a gate electrode (120) overlying a gate dielectric (110) overlying a semiconductor substrate (102). First spacers (124) are formed on sidewalls of the gate electrode (120). First s/d trenches (130) are formed in the substrate (102) using the gate electrode (120) and first spacers (124) as a mask. The first s/d trenches (130) are filled with a first s/d structure (132). Second spacers (140) are formed on the gate electrode (120) sidewalls adjacent the first spacers (124). Second s/d trenches (150) are formed in the substrate (102) using the gate electrode (120) and the second spacers (140) as a mask. The second s/d trenches (150) are filled with a second s/d structure (152). Filling the first and second s/d trenches (130, 150) preferably includes growing the s/d structures using an epitaxial process. The s/d structures (132, 152) may be stress inducing structures such as silicon germanium for PMOS transistors and silicon carbon for NMOS transistors.
摘要:
A process for forming strained semiconductor layers. The process include flowing a chlorine bearing gas (e.g. hydrogen chloride, chlorine, carbon tetrachloride, and trichloroethane) over the wafer while heating the wafer. In one example, the chorine bearing gas is flowed during a condensation process on a semiconductor layer that is used as a template layer for forming a strain semiconductor layer (e.g. strain silicon). In other examples, the chlorine bearing gas is flowed during a post bake of the wafer after the condensation operation.