Abstract:
A synchronous integrated circuit such as a scalar processor or superscalar processor. Circuit components or units are clocked by and synchronized to a common system clock. At least two of the clocked units include multiple register stages, e.g., pipeline stages. A local clock generator in each clocked unit combines the common system clock and stall status from one or more other units to adjust register clock frequency up or down.
Abstract:
An ultra low power adder with sum synchronization which provides a power reduction method in the binary carry propagate adders by using a carry skip technique. The invention eliminates glitches at the adder outputs by preventing signal transitions at the sum outputs until the corresponding carry signals have reached their final values, which is achieved by adding a synchronization circuitry to the sum calculation path.
Abstract:
A dynamic predictive and/or exact caching mechanism is provided in various stages of a microprocessor pipeline so that various control signals can be stored and memorized in the course of program execution. Exact control signal vector caching may be done. Whenever an issue group is formed following instruction decode, register renaming, and dependency checking, an encoded copy of the issue group information can be cached under the tag of the leading instruction. The resulting dependency cache or control vector cache can be accessed right at the beginning of the instruction issue logic stage of the microprocessor pipeline the next time the corresponding group of instructions come up for re-execution. Since the encoded issue group bit pattern may be accessed in a single cycle out of the cache, the resulting microprocessor pipeline with this embodiment can be seen as two parallel pipes, where the shorter pipe is followed if there is a dependency cache or control vector cache hit.
Abstract:
A dynamic predictive and/or exact caching mechanism is provided in various stages of a microprocessor pipeline so that various control signals can be stored and memorized in the course of program execution. Exact control signal vector caching may be done. Whenever an issue group is formed following instruction decode, register renaming, and dependency checking, an encoded copy of the issue group information can be cached under the tag of the leading instruction. The resulting dependency cache or control vector cache can be accessed right at the beginning of the instruction issue logic stage of the microprocessor pipeline the next time the corresponding group of instructions come up for re-execution. Since the encoded issue group bit pattern may be accessed in a single cycle out of the cache, the resulting microprocessor pipeline with this embodiment can be seen as two parallel pipes, where the shorter pipe is followed if there is a dependency cache or control vector cache hit.
Abstract:
A dynamic predictive and/or exact caching mechanism is provided in various stages of a microprocessor pipeline so that various control signals can be stored and memorized in the course of program execution. Exact control signal vector caching may be done. Whenever an issue group is formed following instruction decode, register renaming, and dependency checking, an encoded copy of the issue group information can be cached under the tag of the leading instruction. The resulting dependency cache or control vector cache can be accessed right at the beginning of the instruction issue logic stage of the microprocessor pipeline the next time the corresponding group of instructions come up for re-execution. Since the encoded issue group bit pattern may be accessed in a single cycle out of the cache, the resulting microprocessor pipeline with this embodiment can be seen as two parallel pipes, where the shorter pipe is followed if there is a dependency cache or control vector cache hit.