Abstract:
A method for analyzing a patient based on a volumetric pulmonary scan includes receiving volumetric pulmonary scan data representative of a patient's pulmonary structure. This method also includes determining a level of transpulmonary pressure defining an effort metric based on one or more characteristics from the received volumetric pulmonary scan data. This method further includes determining one or more physiological or anatomical parameters associated with the transpulmonary pressure based on the received volumetric pulmonary scan data and the effort metric. A non-transitory computer readable medium can be programmed with instructions for causing one or more processors to perform the method for analyzing a patient based on a volumetric pulmonary scan.
Abstract:
Systems and methods for visualizing pulmonary fissures including a processor and software instructions for creating a 3 dimensional model of the fissures. Creating the 3 dimensional model includes accessing volumetric imaging data of the patient's lungs, analyzing the volumetric imaging data to segment the lungs into lobes, using the segmented lobes to identify locations at which pulmonary fissures should be present where the lobes abut each other, analyzing the volumetric images to identify locations at which pulmonary fissures actually are present as existing fissure, comparing the locations at which pulmonary fissures should be present to the locations at which pulmonary fissures are present to identify locations of missing fissure, and creating a visual display comprising a 3 dimensional model of the pulmonary fissures including existing fissure portions and missing fissure portions, with the existing fissure portion visually distinct from the missing fissure portions.
Abstract:
Methods and systems for assessing lung function using volumetric images obtained at inspiration and expiration. The method may include processing the first and second set of images to identify known anatomical structures of the lungs, registering the first set of images to the second set of images to match voxels of the first set of images to voxels of the second set of images as matched pairs of inspiratory and expiratory voxels, calculating a continuous probability of a lung characteristic at a location of the matched pairs of voxels, and displaying the result on a display. The method may also include classifying lung tissue at each location as normal, having air trapping without emphysema, or being emphysematous.
Abstract:
Systems and methods for displaying a predicted outcome of a lung volume reduction procedure for a patient including a user interface, a processor, and programing operable on the processor for displaying a predicted outcome of the bronchoscopic lung volume reduction procedure on the user interface, wherein displaying the predicted outcome of the lung volume reduction procedure includes receiving patient data comprising volumetric images of the patient, analyzing the volumetric images to identify one or more features correlated to treatment outcome prediction, predicting an outcome for a treatment modality or treatment device using the one or more identified features, and displaying the predicted outcome on the user interface.
Abstract:
Methods and systems for assessing lung function using volumetric images obtained at inspiration and expiration. The method may include processing the first and second set of images to identify known anatomical structures of the lungs, registering the first set of images to the second set of images to match voxels of the first set of images to voxels of the second set of images as matched pairs of inspiratory and expiratory voxels, calculating a continuous probability of a lung characteristic at a location of the matched pairs of voxels, and displaying the result on a display. The method may also include classifying lung tissue at each location as normal, having air trapping without emphysema, or being emphysematous.
Abstract:
Analysis of pulmonary scans representative of a patient's pulmonary structure can be used to classify a patient into one or more of a plurality of populations. The patient's scan can be mapped to a reference domain and analyzed to determine one or more fissure features associated with a plurality of regions in the reference domain. Comparison of the determined fissure features with a plurality of fissure atlases, each associated with different population, can be performed to classify the patient into one or more of the populations. Data from different fissure atlases can be compared to determine regions in the fissure atlases that distinguish one population from another. Such distinguishing regions can improve the ability to classify the patient while reducing errors based on false classifications.
Abstract:
Systems and methods for visualizing pulmonary fissures including a processor and software instructions for creating a 3 dimensional model of the fissures. Creating the 3 dimensional model includes accessing volumetric imaging data of the patient's lungs, analyzing the volumetric imaging data to segment the lungs into lobes, using the segmented lobes to identify locations at which pulmonary fissures should be present where the lobes abut each other, analyzing the volumetric images to identify locations at which pulmonary fissures actually are present as existing fissure, comparing the locations at which pulmonary fissures should be present to the locations at which pulmonary fissures are present to identify locations of missing fissure, and creating a visual display comprising a 3 dimensional model of the pulmonary fissures including existing fissure portions and missing fissure portions, with the existing fissure portion visually distinct from the missing fissure portions.
Abstract:
A method of using computed tomographic (CT) image data to provide a quantitative assessment of various classes of lung disease, including for example, interstitial lung abnormalities associated with interstitial lung disease (ILD) represented as a mass contribution, or as a percentage contribution by mass. Mass fractions of emphysema due to COPD are also addressed along with the special case of addressing air trapping mass fraction due to ILA/ILD, asthma, COPD, BOS.
Abstract:
Systems and methods for displaying a predicted outcome of a lung volume reduction procedure for a patient including a user interface, a processor, and programing operable on the processor for displaying a predicted outcome of the bronchoscopic lung volume reduction procedure on the user interface, wherein displaying the predicted outcome of the lung volume reduction procedure includes receiving patient data comprising volumetric images of the patient, analyzing the volumetric images to identify one or more features correlated to treatment outcome prediction, predicting an outcome for a treatment modality or treatment device using the one or more identified features, and displaying the predicted outcome on the user interface.
Abstract:
Systems and methods for displaying a predicted outcome of a lung volume reduction procedure for a patient including a user interface, a processor, and programing operable on the processor for displaying a predicted outcome of the bronchoscopic lung volume reduction procedure on the user interface, wherein displaying the predicted outcome of the lung volume reduction procedure includes receiving patient data comprising volumetric images of the patient, analyzing the volumetric images to identify one or more features correlated to treatment outcome prediction, predicting an outcome for a treatment modality or treatment device using the one or more identified features, and displaying the predicted outcome on the user interface.