Abstract:
Disclosed is a lamp transformer assembly, transformer winding arrangement and method of assembling a transformer assembly and lamp igniter transformer core. The lamp transformer assembly comprises a transformer core comprising two or more core members, wherein the core members ends are adapted to provide a transformer core with axially distributed air gaps. Furthermore, the transformer assembly comprises a primary and secondary winding, wherein one or more core members and the secondary winding are adapted to provide insertion of the one or more core members within the interior of the secondary winding. The transformer core members are attached to complete the core.
Abstract:
An ignition aid (50, 60, 70, 80, 100, 120, 130, 150, 160, or 170) is provided for an HID lamp (20). Particularly the ignition aid includes an electrically conductive coil or coil portions wrapped around selected portions of the arc tube to act as the ignition aid and lower the breakdown voltage. In other embodiments, starting aids, and particularly one or more turns of the conductive coil or coil portions support the arc tube within an opening of a surrounding shroud (90) and thereby control the spacing between the arc tube (20) and the shroud (90). This limits the maximum thermal stress of the arc tube within a desired range.
Abstract:
A method and system to supply current to a high pressure lamp is provided, the method and system comprising an alternating lamp current waveform with a half cycle mean amplitude I1 and a half cycle time duration T, a current pulse waveform including at least one current pulse with a half cycle mean amplitude I2 and at least one current pulse occurring after the trailing edge of a half cycle of the alternating lamp current, the pulse having a half cycle duration of Tp. These waveforms are combined to generate a current waveform including a current pulse waveform, the current pulse waveform starting after a time delay Td from the trailing edge of a half cycle of the alternating lamp current waveform, the time duration Tp of the at least one current pulse lasting less than the remaining time before the leading edge of the second half cycle of the alternating lamp current waveform. The combined current waveform supplies current to a high pressure lamp and produces a cone shaped tip protrusion which reduces lamp flicker.
Abstract:
A light weight, bobbinless high voltage transformer and igniter module is provided that meets low-cost and high-reliability requirements for automotive HID products. A printed circuit board (112) serves as a carrier for low voltage electronic components. A high voltage bar core transformer (114) is held in a cradle (130, 130′) that accommodates potting material and has a channel (160) that receives a high voltage wire extending from the transformer for connection with a lead (104) of an HID lamp (100). Thin walls (210, 212) allow the cradle to serve as the cavity for the potting of the transformer. In addition, multi-layer dielectric material is disposed between the primary and secondary windings. Preferably, the primary winding (196) is a strap that covers a large surface area of the secondary winding (192).
Abstract:
A lamp is provided having an arctube having a light-transmitting envelope. The arctube is surrounded by a gaseous medium confined by a containment envelope such as a hermetic shroud. The gaseous medium is preferably He or H2 or Ne or another gas whose thermal conductivity is greater than that of N2 at 800° C., or a mixture thereof, to help cool the arctube. The inside and/or outside of the shroud may be coated with a diffusion barrier. To help cool the hot spot of the arctube the gap between the shroud and the envelope can be made small, the portion of the shroud wall near the arc can be thickened, the arctube can be offset above the longitudinal axis of the shroud, and the return lead of the arctube can be located between the shroud and the arctube.
Abstract:
A high intensity discharge lamp, the lamp including a light emitting vessel having a wall made of ceramic material that defines an inner space with a first end portion having a respective first opening formed therein and a second end portion having a respective second opening formed therein, two discharge electrodes, with a first electrode extending therethrough the first opening of the first end portion of the vessel and a second electrode extending therethrough the second opening of the second end portion of the vessel, together forming a gap between ends of the discharge electrodes positioned within the vessel, wherein the light emitting vessel defines an inner space characterized by an inner diameter ranging from and including 1 millimeters to 3 millimeters and an inner length between and including 5 millimeters to 10 millimeters, wherein the wall of the vessel has a thickness ranging between and including 0.3 millimeters to 0.8 millimeters, wherein each tip of the electrodes within the vessel have a shank diameter ranging between and including 0.2 millimeters to 0.55 millimeters, and wherein the gap between the ends of the electrodes positioned within the vessel is smaller than 4 millimeters.
Abstract:
Disclosed is a lamp transformer and method of assembling a lamp transformer within an igniter module or housing. The lamp transformer comprising a potted bar core transformer; and a carrier attached to the potted bar core transformer, the carrier adapted to position the potted bar core transformer on a pc board at a predetermined location.
Abstract:
A lamp is provided having an arctube having a light-transmitting envelope. The arctube is surrounded by a gaseous medium confined by a containment envelope such as a hermetic shroud. The gaseous medium is preferably He or H2 or Ne or another gas whose thermal conductivity is greater than that of N2 at 800° C., or a mixture thereof, to help cool the arctube. The inside and/or outside of the shroud may be coated with a diffusion barrier. To help cool the hot spot of the arctube the gap between the shroud and the envelope can be made small, the portion of the shroud wall near the arc can be thickened, the arctube can be offset above the longitudinal axis of the shroud, and the return lead of the arctube can be located between the shroud and the arctube.
Abstract:
An ignition aid (50, 60, 70, 80, 100, 120, 130, 150, 160, or 170) is provided for an HID lamp (20). Particularly the ignition aid includes an electrically conductive coil or coil portions wrapped around selected portions of the arc tube to act as the ignition aid and lower the breakdown voltage. In other embodiments, starting aids, and particularly one or more turns of the conductive coil or coil portions support the arc tube within an opening of a surrounding shroud (90) and thereby control the spacing between the arc tube (20) and the shroud (90). This limits the maximum thermal stress of the arc tube within a desired range.
Abstract:
A high pressure discharge lamp with a thermally improved anode, as well as a method of making such a lamp, are disclosed. The lamp includes a refractory arc tube with a hermetically sealed arc chamber, a fill in the arc chamber for facilitating light generation, and an anode and a cathode extending into the hermetically sealed arc chamber and being spaced apart from each other. The anode comprises a shank of refractory metal, a cylindrically shaped refractory metal sleeve on a portion of the shank, and an end proximally facing the cathode. The anode end comprises a substantially solid mass of refractory metal, and is integrally joined to both the shank and the metal sleeve to facilitate heat flow from the anode end to the shank and sleeve. The anode end preferably is generally shaped as a hemisphere facing the cathode. The refractory metal sleeve is preferably one or more layers of a helically wound refractory metal wire having an outer diameter more than twice a diameter of the shank.