Abstract:
The present invention extends to methods, systems, and computer program products for detecting targets across beams at roadway intersections. Embodiments of the invention include tracking a target across a plurality of beams of a multiple beam radar system in a roadway intersection and updating track files for targets within a roadway intersection. Returns from a plurality of radar beams monitoring a roadway intersection are divided into range bins. Identified energy in the range bins is used to compute the position of targets within a roadway intersection. When the position of a target is computed, it is determined if the position is a new position for an existing target or if the position is the position of a new target.
Abstract:
Methods, systems, and computer program products for optimizing automobile traffic flow through an intersection by detecting and reducing platoon interference. One method, performed in a computer product, includes steps of identifying a cluster in traffic information of a cycle of a traffic signal, determining that the cluster qualifies as an upstream platoon, calculating properties of the platoon, and generating an Enhanced Purdue Coordination Diagram (EPCD) for the cycle based on the calculated properties of the platoon. Another method includes obtaining, by a computer device, traffic information corresponding to an intersection; determining, by the computer device, platoon properties of the traffic information corresponding to each cycle of a traffic signal; and calculating, by the computer device, a timing change to make to the traffic signal to improve traffic flow through the intersection, the timing change being based on the platoon properties.
Abstract:
FIG. 1 is a perspective view of a modular radar device; FIG. 2 is a front view thereof; FIG. 3 is a rear view thereof; FIG. 4 is a top view thereof; FIG. 5 is a bottom view thereof; FIG. 6 is a right side view thereof; and, FIG. 7 is a left view thereof. Objects shown in broken lines depict portions of the modular radar device that form no part of the claimed design.
Abstract:
Methods, systems, and computer program products for optimizing automobile traffic flow through an intersection by detecting and reducing platoon interference. One method, performed in a computer product, includes steps of identifying a cluster in traffic information of a cycle of a traffic signal, determining that the cluster qualifies as an upstream platoon, calculating properties of the platoon, and generating an Enhanced Purdue Coordination Diagram (EPCD) for the cycle based on the calculated properties of the platoon. Another method includes obtaining, by a computer device, traffic information corresponding to an intersection; determining, by the computer device, platoon properties of the traffic information corresponding to each cycle of a traffic signal; and calculating, by the computer device, a timing change to make to the traffic signal to improve traffic flow through the intersection, the timing change being based on the platoon properties.
Abstract:
The present invention extends to methods, systems, and computer program products for detecting targets across beams at roadway intersections. Embodiments of the invention include tracking a target across a plurality of beams of a multiple beam radar system in a roadway intersection and updating track files for targets within a roadway intersection. Returns from a plurality of radar beams monitoring a roadway intersection are divided into range bins. Identified energy in the range bins is used to compute the position of targets within a roadway intersection. When the position of a target is computed, it is determined if the position is a new position for an existing target or if the position is the position of a new target.
Abstract:
The present invention extends to methods, systems, and computer program products for detecting targets across beams at roadway intersections. Embodiments of the invention include tracking a target across a plurality of beams of a multiple beam radar system in a roadway intersection and updating track files for targets within a roadway intersection. Returns from a plurality of radar beams monitoring a roadway intersection are divided into range bins. Identified energy in the range bins is used to compute the position of targets within a roadway intersection. When the position of a target is computed, it is determined if the position is a new position for an existing target or if the position is the position of a new target.
Abstract:
A radar system for monitoring vehicles on a roadway comprises a radar control unit a radar subsystem including one or more antennas. The radar subsystem is in communication with the radar control unit. The radar system is configured to be positioned with the one or more antennas at a single position relative to an intersection. Additionally, the radar system is configured to receive radar data from all traffic entrances into the intersection using the radar subsystem.
Abstract:
The present invention extends to methods, systems, and computer program products for detecting targets across beams at roadway intersections. Embodiments of the invention include tracking a target across a plurality of beams of a multiple beam radar system in a roadway intersection and updating track files for targets within a roadway intersection. Returns from a plurality of radar beams monitoring a roadway intersection are divided into range bins. Identified energy in the range bins is used to compute the position of targets within a roadway intersection. When the position of a target is computed, it is determined if the position is a new position for an existing target or if the position is the position of a new target.
Abstract:
A traffic monitoring system for monitoring objects within an intersection comprises a centralized controller unit. The centralized controller unit comprises one or more processors for processing data feeds received from one or more radar subsystems. One or more radar subsystems are positioned adjacent to each other at a single location relative to an intersection. The one or more radar subsystems are configured to receive radar data from within the intersection.
Abstract:
A vehicle traffic sensor for detecting and monitoring vehicular targets is presented. The sensor employs a planar design resulting in a reduced profile sensor. The sensor includes a multi-layer radio frequency board with RF components on one of the sides and both isolation and planar array antennas on the opposing side. The antennas are preferably tapered planar array antennas which include one transmit antenna and one receive antenna. The sensor also includes at least one logic or signal processing board populated with components on a first side and a ground plane on a second side positioned toward the RF componentry of the RF board to form an RF shield. The boards are housed within a housing that is permeable, at least on the side through which the antenna structures propagate.