Abstract:
A method and system of imaging a moving object within a microfluidic environment includes illuminating a first side of a flow cell configured to carry the moving object within a flow of carrier fluid with an illumination source emitting at least partially coherent light, the at least partially coherent light passing through an aperture prior to illuminating the flow cell. A plurality of lower resolution frame images of the moving object are acquired with an image sensor disposed on an opposing side of the flow cell, wherein the image sensor is angled relative to a direction of flow of the moving object within the carrier fluid. A higher resolution image is reconstructed of the moving object based at least in part on the plurality of lower resolution frame images.
Abstract:
A lens-free system for the three-dimensional imaging of objects contained within a sample places a sample holder between an image sensor and an illumination source, with the sample-sensor distance being much smaller than the sample-illumination source distance. Holographic images are taken at different angles as well as different lateral jogs within a single angle and are reconstructed into a three dimensional image of objects within the sample. The system may be a hand held, portable unit.
Abstract:
A method and system of imaging a moving object within a microfluidic environment includes illuminating a first side of a flow cell configured to carry the moving object within a flow of carrier fluid with an illumination source emitting at least partially coherent light, the at least partially coherent light passing through an aperture prior to illuminating the flow cell. A plurality of lower resolution frame images of the moving object are acquired with an image sensor disposed on an opposing side of the flow cell, wherein the image sensor is angled relative to a direction of flow of the moving object within the carrier fluid. A higher resolution image is reconstructed of the moving object based at least in part on the plurality of lower resolution frame images.
Abstract:
A system for three dimensional imaging of an object contained within a sample includes an image sensor, a sample holder configured to hold the sample, the sample holder disposed adjacent to the image sensor, and an illumination source comprising partially coherent light. The illumination source is configured to illuminate the sample through at least one of an aperture, fiber-optic cable, or optical waveguide interposed between the illumination source and the sample holder, wherein the illumination source is configured to illuminate the sample through a plurality of different angles.
Abstract:
A system for imaging objects within a sample includes an image sensor and a sample holder configured to hold the sample, the sample holder disposed adjacent to the image sensor. The system further includes an illumination source configured to scan in two or three dimensions relative to the sensor array and illuminate the sample at a plurality of different locations. The illumination source may include, by way of example, LEDs, laser diodes, or even a screen or display from a portable electronic device. The system includes least one processor configured to reconstruct an image of the sample based on the images obtained from illumination source at the plurality of different scan positions.
Abstract:
A method of imaging a sample includes forming a monolayer wetting layer over a sample containing objects therein. A plurality of lower resolution images are obtained of the sample interposed between an illumination source and an image sensor, wherein each lower resolution image is obtained at discrete spatial locations. The plurality of lower resolution images of the sample are converted into a higher resolution image. One or more of an amplitude image and a phase image are reconstructed of the objects contained within the sample.
Abstract:
A system for imaging objects within a sample includes an image sensor and a sample holder configured to hold the sample, the sample holder disposed adjacent to the image sensor. The system further includes an illumination source configured to scan in two or three dimensions relative to the sensor array and illuminate the sample at a plurality of different locations. The illumination source may include, by way of example, LEDs, laser diodes, or even a screen or display from a portable electronic device. The system includes least one processor configured to reconstruct an image of the sample based on the images obtained from illumination source at the plurality of different scan positions.