摘要:
A memory efficient image processor receives DPCM prediction error values from decompressed MPEG coded digital video signals in the form of pixel blocks containing luminance and chrominance data in a 4:2:2 or 4:2:0 format and recompresses the pixel blocks to a predetermined resolution. Luminance and chrominance data are processed with different compression laws during recompression. Luminance data are recompressed to an average of six bits per pixel, and only a reference pixel and one other pixel are processed separately from all other luminance pixels in a block. Chrominance data are recompressed to an average of four bits per pixel. Each pixel block is stored with overhead information facilitating efficient and accurate reconstruction. Accurate pixel reconstruction is facilitated by processing a reference pixel accurately; scaling the pixel block; employing quantization tables which are symmetrical and fitted to the domain of the pixel block; biasing negative prediction error values to positive values; using short codewords in quantization tables at levels which are most likely to occur statistically; and processing each pixel with three, four or five bit quantization to ensure maximum resolution and an overall four-bit average for the pixel block.
摘要:
A television receiver with an MPEG decoder is configurable for full high definition decoding and display, or reduced cost lower definition display. The MPEG decoder (10-33) uses a controllable dual-mode data reduction network selectively employing horizontal detail reduction (29) and data re-compression (30) between the decoder and the decoder frame memory (20) from which image information to be displayed (27) is derived. The amount of data reduction is manufacturer selected in accordance with the resolution of the display device, e.g., equal to or less than high definition resolution. The frame memory size is also manufacturer selected in accordance with the resolution of the display device.
摘要:
Copy protection is provided at a mass storage device provided in or connected to a decoder for receiving digital transmissions of audio and video program material by virtual scrambling of blocks of data. Non-sequential storage locations for blocks of data are defined in accordance with a key and the file allocation table is encrypted and stored. Thus blocks of data remain intact and need not be decrypted upon playback, reducing processing time, while the program is effectively protected from reassembly without decryption of the file allocation table. The key(s) may be maintained internally within the decoder and need not be shared, thus avoiding a need for user identification and/or authentication. Software for encryption, including keys may be downloaded to the decoder through the same transmission link used for transmission of data files that may be encrypted in response to control signals or flags transmitted with data files to be protected.
摘要:
An image processor produces a DPCM prediction error to be quantized. If the prediction error value is positive, the value passes unchanged to a quantizer. If the prediction error value is negative, a bias value is added to the prediction error value to produce a positive number within the operating limits of the quantizer. Biased prediction error values are quantized. Because all values received by the quantizer are positive and within the current quantizer limits, the quantization table used by the quantizer need not include quantization values for negative prediction error values. This reduces the scope of prediction error values by a factor of two, doubling quantization resolution.
摘要:
Apparatus, method and computer program product are provided for digitally processing an encrypted data stream scrambled, for example, according to content scrambling system (CSS) technology. This digital processing insures against communication of clear data within the computer system from a central processing unit (CPU) to any accessible structure, such as memory or a system bus. Descrambling of the (CSS) scrambled data stream occurs within a module executing on the CPU, which is followed by reencryption of the data prior to transfer from the CPU. By so processing the data, integrity of copyrighted material is maintained, while allowing for software descrambling of the CSS encrypted data stream. Various techniques for establishing the encryption/decryption algorithm pair employed are described. Decryption of the re-encrypted data can occur at a receiving software module and/or a receiving hardware device, such as a decoder.
摘要:
An MPEG compatible decoder receives encoded, compressed data in the form of image representative pixel blocks. The decoder includes a frame memory (20) for storing reconstructed pixel blocks incident to the decoding process. The previously decompressed data is re-compressed (30) before being written to the memory. Stored decompressed data is decompressed for display (34, 26), or as needed for decoding functions such as motion compensation processing (32, 22). The compression performed before writing data to memory is block-based compression using compressed data from one of two different compression paths (FIG. 3, 314, 320) which compress a given pixel block simultaneously.
摘要:
In a video signal processor including a motion compensated predictive coding data compression system, three adjacent image frames (1, 2, 3) are analyzed to detect a luminance gradient such as is typically associated with image fading. The frames are similarly divided into several segments (A . . . L). The sum of the absolute pixel value differences between corresponding segments from adjacent frames is obtained for each of two pairs adjacent frame segments (DIFF.sub.1-2 ; DIFF.sub.2-3). The ratio of the two frame differences (S) is obtained for each segment. Fading is indicated if the ratio remains substantially constant for all or a predetermined number of regions. If fading is detected, any motion vectors generated by the motion coder are assigned a zero value and are not coded.
摘要:
Dynamic varying of encrypting of a stream of data at an encryption unit based on data content is disclosed. The dynamic varying of the encrypting, which can be responsive to passage of a predefined number of units of physical data or passage of a predefined number of conceptual units of data, is accomplished by changing at least one encryption parameter over different portions of the data. The at least one encryption parameter can comprise one or more of an encryption key, an encryption granularity, an encryption density scale, an encryption density, an encryption delay, an encryption key update variable, and an encryption key update data trigger. The change in encryption parameter is signaled to a receiver's decryption unit and used by the decryption unit in decrypting the dynamically varied encrypted stream of data. The stream of data may comprise, e.g., MPEG compressed video or audio.
摘要:
In encoding and decoding video signals, a progressive video bitstream is received which has reference frames and non-reference frames, each having an initial temporal reference in accordance with an initial frame sequence structure. The temporal references of the only the reference frames are remapped, by ignoring the non-reference frames. The reference frames are packetized with a base packet-identifier (PID) and the non-reference frames with an enhancement PID, to provide base and enhancement transport bitstreams, respectively.
摘要:
A method and mechanism for repositioning video images in a compressed data stream without requiring bit shifting. A P frame image is to be repositioned from an original position to an alternate position. The P frame image data is analyzed to determine whether the repositioning will result in the image data bit positions being changed with respect to the original image. In response to determining the bit positions will be changed, the original image data is modified by adding stuffing bits in the form of a stuffing macroblock to restore the image data to its original bit positions. The P frame is intra-coded and the stuffing macroblock is non-intra coded. A non-intra quantization matrix is selected such that upon decode the stuffing macroblock data does not adversely affect the final picture. Maintaining the original bits positions of the image data facilitates a straightforward copy of unmodified data from the original P frame to the new P frame.