Abstract:
A system for bringing an internal combustion engine to a stop at a predetermined angular position of an engine shaft, such as a crankshaft or a camshaft, with respect to the engine's valves. The optimum shaft stop position is the point wherein the fewest lifters are collapsed the least amount. Exemplary methods and apparatus include using the engine starter motor to jog the stopped engine to the desired position; using the engine alternator to impose a variable electromagnetic load on the engine to bring the engine to a stop at the desired position; using variable firing of cylinders to control the deceleration profile to bring the engine to a stop at the desired position; and providing one or more detents formed in the shaft and using a shaft follower to control the stop position of the shaft by engaging the follower into a detent.
Abstract:
A two-step roller finger follower including an elongate body having side walls defining coaxially disposed shaft orifices, a pallet end and a socket end interconnecting with the side walls to define a slider arm aperture, and a latch channel. The socket end is mountable to an hydraulic lash adjuster, and the pallet end is matable with a valve stem. A slider arm for engaging a high-lift cam lobe is disposed in the slider arm aperture and has a first end pivotably mounted to the pallet end of the body and the second end forming a slider tip for engaging an activation/deactivation latch. The latch is slidably disposed in the latch channel, and the latch has a nose section for selectively engaging the slider tip. A spool-shaped roller having first and second roller elements fixedly attached to the shaft is rotatably disposed in the shaft orifices, the roller being adapted to follow the surface motion of low-lift cam lobes. Preferably, the shaft is journalled in roller or needle bearings which extend between and through the first and second shaft orifices, being thus exposed to normal copious oil flow through the RFF.
Abstract:
A two-step finger follower rocker arm assembly including a follower body having a socket at a first end for engaging a hydraulic lash adjuster and a pad at an opposite end for engaging a valve stem. A passage through the follower body in the direction of actuation by an engine cam is slidingly receivable of a slider member for variably engaging a central high-lift lobe. A lost-motion spring urges the slider member into contact with the central lobe. A latch member driven by a piston selectively locks the slider member to the follower body, causing the follower to follow the motion of the central cam lobe. When the latch member is disengaged, the slider member slides within the follower body, allowing lateral rollers to follow lateral cam lobes. The lateral rollers may be supported on the body by a rotatable cross-shaft or a fixed cross-shaft, or by a pair of fixed stub shafts, or by a pair of fixed bearing races.
Abstract:
A two-step finger follower rocker arm assembly including a follower body having a socket at a first end for engaging a hydraulic lash adjuster and a pad at an opposite end for engaging a valve stem. A passage through the follower body in the direction of actuation by an engine cam lobe is slidingly receivable of a slider member for variably engaging a central cam lobe, preferably a high-lift lobe. An elongate shaft extends through a transverse bore in the slider member and through a slotted passage in the slider member. In the follower body, the shaft is provided with bearings supporting first and second lateral roller followers on opposite sides of the body for variably engaging first and second preferably low-lift lateral cam lobes flanking the central cam lobe. A lost-motion spring urges the slider member into contact with the central lobe. A latch member driven by a piston selectively locks the slider member to the follower body such that the follower follows the motion of the central cam lobe. When the latch member is disengaged from the slider member, the member slides within the follower body, allowing the lateral rollers to engage and follow the lateral cam lobes. Preferably, the latching mechanism is provided as a pre-assembled cartridge unit.
Abstract:
A two-step finger follower rocker arm assembly including a follower body having a socket at a first end for engaging a hydraulic lash adjuster and a pad at an opposite end for engaging a valve stem. A passage through the follower body in the direction of actuation by an engine cam lobe is slidingly receivable of a slider member for variably engaging a central cam lobe, preferably a high-lift lobe. An elongate shaft extends through a transverse bore in the slider member and through a slotted passage in the slider member. In the follower body, the shaft is provided with bearings supporting first and second lateral roller followers on opposite sides of the body for variably engaging first and second preferably low-lift lateral cam lobes flanking the central cam lobe. A lost-motion spring urges the slider member into contact with the central lobe. A latch member driven by a piston selectively locks the slider member to the follower body such that the follower follows the motion of the central cam lobe. When the latch member is disengaged from the slider member, the member slides within the follower body, allowing the lateral rollers to engage and follow the lateral cam lobes. Preferably, the latching mechanism is provided as a pre-assembled cartridge unit.
Abstract:
A two-step roller finger follower includes an elongate body having a first side member and a second side member. A first end and a second end interconnect the first and second side members. The first and second side member define first and second pin orifices, respectively. A center roller is disposed between the first and second side members. The center roller defines a shaft orifice therethrough. A shaft extends through the shaft orifice. A first shaft end is disposed proximate the first side member, and the second shaft end is disposed proximate the second side member. The second shaft end defines a shaft bore therein. The first shaft end defines a pin chamber therein. The shaft bore being is substantially concentric with and intersects the pin chamber. A locking pin assembly is disposed partially within the shaft bore, the pin chamber and at least one of the pin orifices. The locking pin assembly has a first position wherein the shaft is decoupled from the body and a second position wherein the shaft is coupled to the body, and is switchable between the first and second positions.
Abstract:
A roller finger follower. includes an elongate body having first and second opposing sides each having respective inside surfaces. First and second grooves are defined by the respective inside surfaces. A slider bracket includes a top plate having a top surface that is substantially perpendicular to the first and second sides. First and second projections are affixed to or integral with the top plate, and protrude therefrom in a generally parallel manner relative to the top surface. The first projection is slidably disposed within the first groove and the second projection is slidably disposed within the second groove. A locking pin assembly is carried by the slider bracket, and selectively couples and decouples the slider bracket to and from the body.
Abstract:
An improved direct acting hydraulic valve lifter (DAHVL) has features including reduced dead oil storage with lower mass and faster filling, improved air venting, internal oil recirculation and targeted oil supply that combine to reduce the presence of air in the lifter. Foam filling and baffle reconfiguration are included among means for reducing stored oil volume which can also improve the follower cylinder support. Means for venting along the piston and cylinder of the lifter are shown. The various features combine to limit air intake and to more quickly expel air which does enter the lifter.
Abstract:
An improved direct acting hydraulic valve lifter (DAHVL) has features including reduced dead oil storage with lower mass and faster filling, improved air venting, internal oil recirculation and targeted oil supply that combine to reduce the presence of air in the lifter. Foam filling and baffle reconfiguration are included among means for reducing stored oil volume which can also improve the follower cylinder support. Means for venting along the piston and cylinder of the lifter are shown. The various features combine to limit air intake and to more quickly expel air which does enter the lifter.
Abstract:
An improved hydraulic lash adjuster including a cup-shaped adjuster body, and a plunger assembly disposed within the adjuster body. The plunger assembly includes a stepped axial bore extending from a body inner end to a central oil passage opening onto a hemispherical pivot head. A check valve cartridge sub-assembly is disposed against the step, defining a low-pressure oil chamber in the axial bore. A lash adjustment spring is disposed against the cartridge sub-assembly in a high-pressure chamber formed between the sub-assembly and the adjuster body. The cartridge sub-assembly may be used in other hydraulic lash adjusters such as are incorporated in hydraulic valve lifters.