摘要:
A hydraulic shock absorber having discrete damping levels in the rebound direction includes a piston that reciprocates within a pressure tube and divides the pressure tube into rebound and pressure chambers. A passage extends through the piston for establishing fluid communication between the rebound and pressure chambers. A one-way, pressure responsive valve normally closing the passage opens in response to fluid pressure of a predetermined magnitude in the rebound chamber when the piston moves in the rebound direction. The side wall of the pressure tube has bleed holes that lead to a bypass channel that is controlled by an electronically controlled or actuated solenoid valve that opens and closes the outlet of the bypass channel to change the damping characteristics in the rebound and jounce directions in response to suspension conditions. The piston carries a slide valve that closes the bleed holes to the bypass channel mechanically in the rebound direction in response to rapid changes in suspension conditions that the solenoid valve cannot react to quick enough.
摘要:
A displacement sensitive valve mechanism incorporated in a shock absorber for a motor vehicle suspension which provides substantially unrestricted hydraulic flow between a first rebound chamber and a second rebound chamber through a first range of displacement of a piston rod and progressively restricts the hydraulic flow between the first rebound chamber and the second rebound chamber during a second range of displacement of the piston, thereby progressively increasing the dampening force resisting displacement of the piston in the second range of displacement.
摘要:
A strut assembly for use in an automotive suspension of a vehicle including a wheel carrier and a chassis includes an outer housing attached to the wheel carrier, a pressure tube disposed within the outer housing, a piston slidably carried within the pressure tube and disposed at the lower end of a piston rod. The outer housing of the strut assembly moves axially relative to the pressure tube under imposition of an axial load upon the strut. The strut assembly can further overcome the static friction forces contained within the strut assembly at a much lower axial input force than in conventional strut designs.