摘要:
Amperometric ceramic electrochemical cells comprise, in one embodiment, an electrolyte layer, a sensing electrode layer comprising a ceramic phase and a metallic phase, and a counter electrode layer, wherein the cell is operable in an oxidizing atmosphere and under an applied bias to exhibit enhanced reduction of oxygen molecules at the sensing electrode in the presence of one or more target gases such as nitrogen oxides (NOX) or NH3 and a resulting increase in oxygen ion flux through the cell. In another embodiment, amperometric ceramic electrochemical cells comprise an electrolyte layer comprising a continuous network of a first material which is ionically conducting at an operating temperature of about 200 to 550° C.; a counter electrode layer comprising a continuous network of a second material which is electrically conductive at an operating temperature of about 200 to 550° C.; and a sensing electrode layer comprising a continuous network of a ceramic phase and a metallic phase which is electrically conductive at an operating temperature of about 200 to 550° C., which sensing electrode is operable to exhibit increased charge transfer in the presence of one or more target gas species. These electrochemical cells and additional electrochemical cell embodiments are suitable for use in gas sensors and methods of sensing or detecting one or more target gases.
摘要:
The present invention provides a system for recording an interaction including, a telephone call between a caller and a digital processing system placed over an interjurisdictional boundary, and may include a telephone call placed to at least one called recipient. For example, a caller may place a telephone call over an interjurisdictional boundary to a remote computer server. The server may use an interactive voice response (IVR) unit to obtain caller identification information, provide recording identification information to the caller, and receive authorization from the caller to record an interaction between the caller and a call recipient. The server can also obtain testamentary intent information. A telephone call may then be placed by the server to the recipient, and a two-party digital voice recording can be made on the remote server of a three-way telephone call, in which the server is one of the parties.
摘要:
Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.
摘要:
The present invention provides a system for recording an interaction including, a telephone call between a caller and a digital processing system placed over an interjurisdictional boundary, and may include a telephone call placed to at least one called recipient. For example, a caller may place a telephone call over an interjurisdictional boundary to a remote computer server. The server may use an interactive voice response (IVR) unit to obtain caller identification information, provide recording identification information to the caller, and receive authorization from the caller to record an interaction between the caller and a call recipient. The server can also obtain testamentary intent information. A telephone call may then be placed by the server to the recipient, and a two-party digital voice recording can be made on the remote server of a three-way telephone call, in which the server is one of the parties.
摘要:
Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.
摘要:
A continuous process for making a crystalline ceramic powder having a perovskite structure, ABO.sub.3, comprising:a. preparing a first acidic aqueous solution containing one or more elements that are insoluble precursor elements capable of forming the perovskite structure;b. preparing a second basic solution containing a sufficient concentration of hydroxide to precipitate the elements in step (a);c. mixing the first acidic solution with the second basic solution to precipitate a substantially pure mixture of hydroxides;d. washing the precipitate to remove hydroxide and salt impurities;e. forming a slurry of oxides or hydroxides of one or more of the elements that are soluble precursor elements capable of forming in the perovskite structure, and heating the slurry to a temperature sufficient to dissolve the soluble oxides or hydroxides of the soluble precursor elements;f. redispersing the washed precipitate and heating to the temperature of the soluble oxides or hydroxides of step (e);g. mixing solubilized oxides or hydroxides of step (e) with the heated slurry of step (f);h. prereacting the third aqueous slurry at temperature, pressure, concentration, and for a time necessary to obtain the desired powder morphology; andi. hydrothermally treating the pre-reacted solution in a continuous reactor at an elevated temperature and pressure for a time sufficient to form the powder.
摘要:
Amperometric ceramic electrochemical cells comprise, in one embodiment, an electrolyte layer, a sensing electrode layer comprising a ceramic phase and a metallic phase, and a counter electrode layer, wherein the cell is operable in an oxidizing atmosphere and under an applied bias to exhibit enhanced reduction of oxygen molecules at the sensing electrode in the presence of one or more target gases such as nitrogen oxides (NOX) or NH3 and a resulting increase in oxygen ion flux through the cell. In another embodiment, amperometric ceramic electrochemical cells comprise an electrolyte layer comprising a continuous network of a first material which is ionically conducting at an operating temperature of about 200 to 550° C.; a counter electrode layer comprising a continuous network of a second material which is electrically conductive at an operating temperature of about 200 to 550° C.; and a sensing electrode layer comprising a continuous network of a ceramic phase and a metallic phase which is electrically conductive at an operating temperature of about 200 to 550° C., which sensing electrode is operable to exhibit increased charge transfer in the presence of one or more target gas species. These electrochemical cells and additional electrochemical cell embodiments are suitable for use in gas sensors and methods of sensing or detecting one or more target gases.
摘要:
A method for manufacturing a precursor powder for use in making a varistor is disclosed. This precursor powder is produced by preparing a homogeneous aqueous dispersion of metal oxides and/or metal hydroxides and heating the dispersion in a closed pressure reactor to a temperature between 200.degree. C. and 350.degree. C. for hydrothermally treating the homogeneous dispersion. The precursor powder produced in the afore-described method is highly homogeneous and of controlled crystal phase and morphology and after mixing with zinc oxide powder can homogeneously be reacted with the zinc oxide in a ceramic process.
摘要:
A process for making a crystalline ceramic powder having a perovskite structure, ABO.sub.3, that includes the steps of preparing a first acidic solution containing one or more elements selected from the group consisting of hafnium, zirconium, titanium, niobium, tantalum, uranium, iron, antimony, lanthanum, bismuth, thorium, indium, nickel, manganese, neodymium, samarium, cobalt, tungsten, tin, vanadium, dysprosium, praseodymium, yttrium, promethium, europium, cerium, ytterbium, lutetium, scandium, gadolinium, terbium, holmium, erbium, thulium, chromium, potassium, and lithium; preparing a second basic solution containing a sufficient concentration of hydroxide to provide a predetermined pH when mixed with the first solution; adding the first acidic solution to the second basic solution to precipitate a substantially pure mixture of hydroxides; washing the precipitate to remove hydroxide and salt impurities that solubilize lead or other constituent elements of the powder; preparing an aqueous slurry of the washed precipitate and adding oxides or hydroxides of one or more of the elements selected from the group consisting of barium, strontium, calcium, magnesium, lead, zinc, yttrium, magnesium, manganese, cobalt, zinc and nickel; hydrothermally treating the slurry at an elevated temperature and pressure for a time sufficient to form the powder; and drying the powder; wherein when lead, zirconium and titanium are selected the perovskite has the general formula: Pb(Zr.sub.1-x Ti.sub.x)O.sub.3, wherein x has a value of:(1) between 0 and 0.44;(2) between 0.44 and 0.55, and a total dopant and solid solution substitution level between 13 and 50 mole percent;(3) between 0.55 and 1.00; and wherein when x has a value of (1) or (3) then the total dopant and solid substitution level ranges from 0 to 50 mole percent.