摘要:
In the past, “compensated” salt caverns have operated with a compensating liquid, such as brine to displace a stored liquid, such as crude oil, when the stored liquid is needed on the surface. Virtually all of the stored liquid in a compensated salt cavern can be expelled from the salt cavern when it is filled with the compensating liquid. In the past, “uncompensated” salt caverns have been used to store gases, such as natural gas. Uncompensated caverns operate without any compensating liquid; instead they rely on pressure. Some of the stored gas (cushion gas) must always be left in an uncompensated salt cavern. This invention breaks with convention and uses a compensating liquid in a salt cavern to store gases which is a technique believed to be previously unknown. “Cushion gas” is not required because the compensating liquid displaces virtually all of the gas in the salt cavern.
摘要:
The methods and apparatus for transporting compressed gas includes a gas storage system having a plurality of pipes connected by a manifold whereby the gas storage system is designed to operate in the range of the optimum compressibility factor for a given composition of gas. The pipe for the gas storage system is preferably large diameter pipe made of a high strength material whereby a low temperature is selected which can be withstood by the material of the pipe. Knowing the compressibility factor of the gas, the temperature, and the diameter of the pipe, the wall thickness of the pipe is calculated for the pressure range of the gas at the selected temperature. The gas storage system may either be modular or be part of the structure of a vehicle for transporting the gas. The gas storage system further includes enclosing the pipes in an enclosure having a nitrogen atmosphere. A displacement fluid may be used to offload the gas from the gas storage system. A vehicle with the gas storage system designed for a particular composition gas produced at a given location is used to transport gas from that producing location to a receiving station miles from the producing location.
摘要:
The Flexible Natural Gas Storage Facility stores natural gas in one or more man-made salt caverns typically located in a single salt dome or in bedded salt. The Flexible Natural Gas Storage Facility can access different sources of natural gas. A first gas source is from a natural gas pipeline(s) and a second gas source is from LNG. Depending on economic conditions, supply conditions and other factors, the Flexible Natural Gas Storage Facility can receive gas from the natural gas pipeline(s) and/or from LNG to fill the salt caverns. Of course, the LNG must be warmed before being stored in a salt cavern.
摘要:
Stranded natural gas is sometimes liquefied and sent to other countries that can use the gas in a transport ship. Conventional receiving terminals use large cryogenic storage tanks to hold the liquefied natural gas (LNG) after it has been offloaded from the ship. The present invention eliminates the need for the conventional cryogenic storage tanks and instead uses uncompensated salt caverns to store the product. The present invention can use a special heat exchanger, referred to as a Bishop Process heat exchanger, to warm the LNG prior to storage in the salt caverns or the invention can use conventional vaporizing systems some of which may be reinforced and strengthened to accommodate higher operating pressures. In one embodiment, the LNG is pumped to higher pressures and converted to dense phase natural gas prior to being transferred into the heat exchanger and the uncompensated salt caverns.
摘要:
The methods and apparatus for transporting compressed gas includes a gas storage system having a plurality of pipes connected by a manifold whereby the gas storage system is designed to operate in the range of the optimum compressibility factor for a given composition of gas. The pipe for the gas storage system is preferably large diameter pipe made of a high strength material whereby a low temperature is selected which can be withstood by the material of the pipe. Knowing the compressibility factor of the gas, the temperature, and the diameter of the pipe, the wall thickness of the pipe may be calculated for the pressure range of the gas at the selected temperature. The gas storage system may either be modular or be part of the structure of a vessel for transporting the gas to the storage system. Since the pipe provides a bulkhead around the gas, the gas storage system may be used in a single hull vessel. The gas storage system further includes enclosing the pipes in a nitrogen atmosphere. A displacement fluid may be used to offload the gas from the gas storage system. A vessel with the gas storage system designed for a particular composition gas produced at a given location is used to transport gas from that producing location to offloading ports hundreds, or thousands, of miles from the producing location.
摘要:
The offshore facility and terminal includes a plurality of underground salt caverns located beneath the ocean floor. An offshore platform is located above the caverns and includes a flow line to a single point mooring for connection to a supertanker. A well extends from the platform into the underground salt caverns for the flow of hydrocarbons. The hydrocarbons are stored in the underground salt caverns with an immiscible displacing fluid, such as brine. The hydrocarbons and brine are immiscible and have different densities such that the brine settles at the bottom of the underground cavern. Another well extends from the underground cavern to a displacing fluid reservoir. This reservoir is a brine pond located in a depression in the ocean floor. The brine is pumped to and from the brine pond and into the underground cavern to assist in the off-loading and removal of the hydrocarbons.
摘要:
A relatively warm mineral deposit is solution mined by injecting fluid through a well drilled into the deposit and dissolving the mineral to form a production brine. Warm production brine is cooled at the surface using a heat exchanger as a crystallizer to precipitate the mineral in the exchanger and form a slurry. Crystals of the mineral in the slurry are recovered in a separation plant leaving a relatively cool, dilute or depleted brine, which is conveyed through the heat exchanger for cooling the production brine and then injected into the mineral deposit to dissolve more mineral thereby providing a continuous process. A pipe-in-pipe heat exchanger is preferably used and in a manner so that the heat exchanger also serves as a primary means for conveying the production fluid and/or slurry from the well to the separation plant. This method extracts and recovers the desired mineral(s), recovers much of the heat in the production brine, accelerates the solution mining process since the injection fluid has been warmed, reduces salting in the production string, is relatively inexpensive to install and maintain, and does not require a source of energy for cooling the production brine such as electricity for a refrigeration system.
摘要:
In the past, “compensated” salt caverns have operated with a compensating liquid, such as brine to displace a stored liquid, such as crude oil, when the stored liquid is needed on the surface. Virtually all of the stored liquid in a compensated salt cavern can be expelled from the salt cavern when it is filled with the compensating liquid. In the past, “uncompensated” salt caverns have been used to store gases, such as natural gas. Uncompensated caverns operate without any compensating liquid; instead they rely on pressure. Some of the stored gas (cushion gas) must always be left in an uncompensated salt cavern. This invention breaks with convention and uses a compensating liquid in a salt cavern to store gases which is a technique believed to be previously unknown. “Cushion gas” is not required because the compensating liquid displaces virtually all of the gas in the salt cavern.
摘要:
The subterranean storage facility includes a subterranean cavern forming an underground cavity in which is disposed an immiscible displacing liquid. A plurality of concentric pipes extend from the surface into the cavity. As a cold fluid at a sub-zero temperature is passed down a first flow bore formed by the concentric pipes, the immiscible displacing fluid is passed in heat exchange relationship up a second flow bore formed by the concentric pipes. The cold fluids are then stored within the cavity at a temperature and pressure consistent for safe storage.
摘要:
A method of handling solid particles is disclosed, comprising the steps of mixing the solid particles with a clay and water and forming a suspension wherein the solid particles remain suspended. The suspension is transported to an emplacement site.