摘要:
A sensor device having an incremental encoder and a measuring sensor generating a measuring signal is assigned to two control devices. A synchronization device generates a synchronization signal. A conditioned first measuring signal is generated in the first control device as a function of the measuring signal. A conditioned second measuring signal is generated in the second control device as a function of the measuring signal. The value of the conditioned first measuring signal at a predefined time after the reception of the synchronization signal in the first control device is transmitted to the second control device. The second control device synchronizes the conditioned second measuring signal as a function of the values of the conditioned first and second measuring signals that the signals have at the predefined time after the respective reception of the synchronization signal in the first and second control devices.
摘要:
The invention relates to a method for operating an internal combustion engine that is equipped with a three-way catalytic converter. According to the inventive method, a lambda value of the air/fuel mixture, with which the internal combustion engine is supplied, is set below and above a set value in a cyclically alternating manner during a forced activation whereby the lambda value in rich phases is less than the set value and in lean phases, is greater than the set value. During the forced activation, the rich phases and the lean phases are matched to one another according to a specified criterion. The invention provides that the amount, by which the lambda value in rich phases is set below the set value, is selected so that it is equal to the amount, by which the lambda value in lean phases is set above the set value. When determining the criterion, an air mass is used that is supplied to the internal combustion engine during the rich and lean phases.
摘要:
A control device for an internal combustion engine has a device for generating control commands for controlling final control elements in accordance with at least one measured value. The control device also has a communications interface for exchanging messages with a control unit for final control elements. A counter is also provided, the status of the counter being dependent on pulses of a measuring signal of an incremental crankshaft angle sensor. The control commands contain desired counter statuses for carrying out the control task. A control unit also has a counter whose counter status depends on the pulses of the measuring signal of the incremental crankshaft angle sensor. Also provided is a device for carrying out the control tasks in accordance with the counter status and the desired counter status.
摘要:
A control device may include an actuator for actuating a final control element on a cooling system of an internal combustion engine and a sensor for scanning a position of the final control element. A method for checking the control device may include the steps of triggering the actuator with a predetermined control signal, determining a progression of the control position scanned by the sensor, and determining the functional capability of the mechanical coupling of the actuator to the final control element on the basis of the predetermined control signal and the determined progression.
摘要:
A control device may include an actuator for actuating a final control element on a cooling system of an internal combustion engine and a sensor for scanning a position of the final control element. A method for checking the control device may include the steps of triggering the actuator with a predetermined control signal, determining a progression of the control position scanned by the sensor, and determining the functional capability of the mechanical coupling of the actuator to the final control element on the basis of the predetermined control signal and the determined progression.
摘要:
The invention relates to a method for determining the actual oxygen load of a 3-path catalyst of a lambda-controlled internal combustion engine, whereby a value for the actual oxygen load is calculated from the signal of a pre-catalyst lambda probe and the measured air mass flow rate by integration over time, whereby the post-catalyst lambda probe is initialized when the signal is interrupted.