Abstract:
The invention relates to a composite material, a method for controlling the thermal effects generated in a physicochemical process using said material, and applications of the material and the method.The composite material comprises an active solid and a phase change material. The phase change material takes the form of micronodules having an average size of between 1 micron and 5 millimeters and it is selected from materials with a liquid/solid phase change temperature of between −150° C. and 900° C. The active solid is selected from solids that can be used in a method involving reversible physicochemical processes that are exothermic in one direction and endothermic in the opposite direction.
Abstract:
The invention concerns a composite material comprising activated carbon and expanded graphite. The material is a block wherein the activated carbon is homogeneously and uniformly distributed in the form of microporous particles. The texture of said particles is characterised by a microporous volume W0 ranging between 0.1 cm3g−1 and 1.5 cm3g−1 and a mean pore dimension L0 ranging between 2 Å and 30 Å, the activated carbon particles have substantially the same texture wherever they are located in the composite material, the thermal conductivity levels of the material range between 1 and 100 Wm−1K−1. Said material is obtained by heat treatment of a mixture of expanded graphite and an activated carbon precursor in the presence of an activating agent at a temperature and for a time interval sufficient to obtain a wear rate of the activated carbon precursor ranging between 5 and 70% by mass.
Abstract:
The invention concerns a method for controlling a thermochemical reaction or a solid-gas adsorption being carried out in a reactor (10) containing an active agent capable of reversibly reacting with a gas, the reactor (10) being connected to an evaporator/condenser assembly (14) for the gas by a connection (12) without control valve, the reactor (10) and the evaporator/condenser assembly (14) each provided with means for selectively exchanging calories with their surroundings. The control method consists in: thermally insulating the reactor (10) and the evaporator/condenser assembly (14) from the surroundings; thermally communicating the reactor (10) with its surroundings so that the active agent reacts with the gas, thereby providing cold to the evaporator (14); thermally communicating the evaporator (14) with its surroundings so as to cool it selectively; and selectively insulating the reactor (10) or the evaporator/condenser assembly (14) from their surroundings so as to stop the reaction at one point of the reversible cycle.
Abstract:
A method for obtaining activated carbons from a partly mesophased and partly mesogenic pitch containing less than about 40% of the a resins, more than about 40% of type β resins and between about 5 and 30% of type γ resins by activating the pitch preceded by its optional carbonization.
Abstract:
The invention relates to a composite material, a method for controlling the thermal effects generated in a physicochemical process using said material, and applications of the material and the method. The composite material comprises an active solid and a phase change material. The phase change material takes the form of micronodules having an average size of between 1 micron and 5 millimeters and it is selected from materials with a liquid/solid phase change temperature of between −150° C. and 900° C. The active solid is selected from solids that can be used in a method involving reversible physicochemical processes that are exothermic in one direction and endothermic in the opposite direction.