摘要:
The invention relates to a raw material for producing a refractory product, a use of this raw material, and a refractory product comprising a raw material of this kind.
摘要:
Disclosed are ceramic bodies comprised of a tialite phase and at least one silicate phase with a rare earth oxide and zirconium additions and methods for the manufacture of the same.
摘要:
Exemplary embodiments relate to a batch for producing an unshaped refractory ceramic product, to a method for producing a fired refractory ceramic product, to a fired refractory ceramic product and to the use of an unshaped refractory ceramic product.
摘要:
A method for reducing shrinkage variability of aluminum titanate honeycombs includes preparing an aluminum titanate-forming batch material that includes least one alkaline earth carbonate having a particle size distribution. The particle size distribution of the at least one alkaline earth carbonate is selected based on the predicted shrinkage during sintering of the aluminum titanate honeycombs.
摘要:
Disclosed herein is a ceramic body comprising at least one phase comprising a pseudobrookite-type crystal structure and at least one phase comprising zirconium tin titanate. Also disclosed are porous ceramic honeycomb structures comprising a ceramic body comprising at least one phase comprising a pseudobrookite-type crystal structure and at least one phase comprising zirconium tin titanate and methods of preparing a ceramic body comprising at least one phase comprising a pseudobrookite-type crystal structure and at least one phase comprising zirconium tin titanate.
摘要:
The disclosure relates to ceramic-body-forming batch materials comprising at least one pore former and inorganic batch components comprising at least one silica source having a specified particle size distribution, methods of making ceramic bodies using the same, and ceramic bodies made in accordance with said methods. The disclosure additionally relates to methods for reducing pore size variability in ceramic bodies and/or reducing process variability in making ceramic bodies.
摘要:
A porous ceramic honeycomb article includes a primary cordierite phase and an intercrystalline glass phase. In an as-fired condition, the porous ceramic honeycomb article exhibits microcrack parameter Nb3≦0.06 and an as-fired E500° C./E25° C. ratio ≦0.99. The article exhibits a coated microcrack parameter Nb3≦0.14 and a coated E500° C./E25° C. ratio ≦1.06 after the porous ceramic honeycomb article has been washcoated and calcined at a temperature of 550° C. After the article is exposed to a thermal treatment at a temperature ≧800° C. following washcoating and calcining, at least a first portion of the porous ceramic honeycomb article has a first treated microcrack parameter Nb3≧0.18, and a first treated mean coefficient of thermal expansion of not more than 12×10−7/° C. over a temperature range of 25° C. to 800° C. Methods of forming the porous ceramic honeycomb article are also disclosed.
摘要:
There is provided a method for the fabrication of porous SiC ceramic. The method comprises oxidizing particles of SiC ceramic thereby forming amorphous silica on the surface of the particles. The oxidized SiC particles are then mixed with an additive. Alternatively, layer(s) of the additive is (are) deposited on their surface by sol-gel technique. The oxidized SiC particles mixed or coated with the additive are then mixed with at least one pore-former. Alternatively, the oxidized SiC particles mixed or coated with the additive are coated with layer(s) of a polymer or pore-former by in-situ polymerization. In embodiments where the oxidized SiC particles are mixed with an additive and a pore-former or polymer, a further additive may be used. In each of these embodiments, the resulting product is then compacted into a green body which is heated and sintered to yield the porous SiC ceramic material. There is also provided a porous SiC ceramic fabricated by the method according to the invention.
摘要:
An oxide-ceramic forming clay comprising an oxide-ceramic forming material, a layered double hydroxide, a pore-forming agent, and water, wherein the amount of the pore-forming agent is between 3 and 50 parts by mass by superaddition to 100 parts by mass of a sum of the oxide-ceramic forming material and the layered double hydroxide and a sum of the pore-forming agent and an organic binder is between 5 and 55 parts by mass also by superaddition which has environment-friendly characteristics in a forming firing step, and usage thereof.
摘要:
A method for reducing shrinkage variability of aluminum titanate honeycombs includes preparing an aluminum titanate-forming batch material that includes least one alkaline earth carbonate having a particle size distribution. The particle size distribution of the at least one alkaline earth carbonate is selected based on the predicted shrinkage during sintering of the aluminum titanate honeycombs.