Abstract:
A modularized illuminating device includes a retaining base, a lighting module, and a light guide element. The retaining base includes an elastic positioning unit. The lighting module is removably disposed on the retaining base, and has a sliding groove and a retaining groove. The light guide element is disposed on the retaining base and faces to the lighting module. When the lighting module is installed to the retaining base along a plugging direction, the elastic positioning unit slides from the sliding groove to the retaining groove to retain the lighting module in the retaining base.
Abstract:
An illumination device includes a light source positioned on an illumination axis, a lens assembly having at least two biconvex lenses disposed on the illumination axis, and a reflector having a reflecting surface enclosing the lens assembly. The light source emits a first group of light beams which directly impinge of the lens assembly, and a second group of light beams which directly impinge on the reflector. The second group of light beams being reflected by the reflecting surface such that they surround the first group of light beams after being refracted by the lens assembly, without such second group of light beams impinging on the lens assembly.
Abstract:
A backlight structure is disclosed, which is constituted of a series of backlight devices connecting with one another to form a large-scale backlight area, the backlight device at least being composed of an emitting portion and a light-guiding portion, wherein the emitting portion provides a light source, mixes the light of the light source and provides the mixed light into the light-guiding portion, which then guides the mixed light out. The emitting portion connects with the light-guiding portion to form a fault structure for connecting with another light-guiding portion, thereby forming a large-scale backlight structure by connecting a sequence of the light-guiding portions using the fault structures without size constraints.
Abstract:
A bar-like side-emitting light guide suitable for re-directing an incident light beam such that the light beam emerges from each side of the structure. The guide structure includes a light guiding bar having an upper surface and a lower surface and extending along a longitudinal direction. On a cross-sectional plane of the light guiding bar, there is a first line interval on the upper surface. A second line interval, a third line interval and a coupling part are located at the lower surface. The coupling part couples with the second line interval and the third line interval. The distance from the lower surface of the light guiding bar to a reference plane of the upper surface varies such that the thickness gradually decreases from the coupling part to the sides. In addition, a planar light source module can be constructed by arranging the foregoing light guiding bars in parallel.
Abstract:
An illumination system includes at least one illumination module and a mechanism. The illumination module includes a light source generating a light beam, a first reflector, in which the light source is positioned, including a first reflective surface to reflect the light beam to form a first beam, and a second reflector including a second reflective surface reflecting the light beam and the first beam to form a second beam and a third beam, wherein the second and third beams combine to generate a projection pattern. The mechanism adjusts the position of the second reflector relative to the light source to change the projection pattern.
Abstract:
A light emitting diode (LED) package includes at least one LED chip, a carrier, a light reflection element and at least one outside connection electrode. The LED chip is disposed on the carrier and a conductive line or a flip chip method is used to connect the electrodes of the LED chip to the external connection electrodes. A transparent material is used for fixing the light reflection element and carrier, and forming a lens.
Abstract:
A bar-like side-emitting light guide suitable for re-directing an incident light beam such that the light beam emerges from each side of the structure. The guide structure includes a light guiding bar having an upper surface and a lower surface and extending along a longitudinal direction. On a cross-sectional plane of the light guiding bar, there is a first line interval on the upper surface. A second line interval, a third line interval and a coupling part are located at the lower surface. The coupling part couples with the second line interval and the third line interval. The distance from the lower surface of the light guiding bar to a reference plane of the upper surface varies such that the thickness gradually decreases from the coupling part to the sides. In addition, a planar light source module can be constructed by arranging the foregoing light guiding bars in parallel.
Abstract:
A light emitting diode (LED) package includes at least one LED chip, a carrier, a light reflection element and at least one outside connection electrode. The LED chip is disposed on the carrier and a conductive line or a flip chip method is used to connect the electrodes of the LED chip to the external connection electrodes. A transparent material is used for fixing the light reflection element and carrier, and forming a lens.
Abstract:
A modularized illuminating device includes a retaining base, a lighting module, and a light guide element. The retaining base includes an elastic positioning unit. The lighting module is removably disposed on the retaining base, and has a sliding groove and a retaining groove. The light guide element is disposed on the retaining base and faces to the lighting module. When the lighting module is installed to the retaining base along a plugging direction, the elastic positioning unit slides from the sliding groove to the retaining groove to retain the lighting module in the retaining base.
Abstract:
A method for examining liquid crystal driving voltages in a liquid crystal display device is provided. An image-sticking test frame is displayed on the liquid crystal display device. The image-sticking test frame includes at least one first pattern having a first gray level, at least one second pattern having a second gray level and at least one third pattern having a third gray level. The third gray level is between the first and second gray levels. The present invention uses the third gray level as a reference, so as to judge whether the liquid crystal driving voltage corresponding to the first gray level is accurate and whether the liquid crystal driving voltage corresponding to the second gray level is accurate.