摘要:
An optical modulator includes: a substrate made of a material having an electro-optical effect; an optical waveguide formed on the substrate; and a modulation electrode for modulating an optical wave propagating through the optical waveguide, wherein emitted light emitted from the optical waveguide is guided by optical fiber, and polarization of the substrate is reversed in a predetermined pattern along the optical waveguide so as to provide waveform distortion having a characteristic opposite to a wavelength dispersion characteristic of the optical fiber.
摘要:
A lock detection apparatus detecting lock of an optical phase-locked loop apparatus including a first phase detector comparing phases of an input light signal and a beat light signal to output a first phase comparison signal, a loop filter forming the first phase comparison signal, and an optical voltage controlled oscillator outputting the beat light signal based on the formed first phase comparison signal. The lock detection apparatus includes: a phase shifter shifting the phase of the beat light signal; and a second phase detector comparing the phases of the input light signal and the phase-shifted beat light signal to output a second phase comparison signal, wherein the phase shifter shifts a quantity of the phase so that the phase comparison signal may not be 0 when the phases of the two light signals compared by the second phase detector synchronize with each other to the beat light signal.
摘要:
A spectroscopy device that separates input light into a plurality of wavelength ranges. A metal body has a hole or aperture which is open on the upper side. The hole or aperture is formed in a polygonal shape having at least a pair of opposite faces not parallel to each other in horizontal cross-section. Inner side faces of the hole or aperture are finished as mirror like reflection surfaces. Polarized input light inputted from the opening to the hole or aperture is reflected by the reflection surfaces and a standing wave is generated inside of the hole or aperture by self interference, whereby the input light is separated into a plurality of wavelength ranges.
摘要:
The stimulated Raman scattering detection apparatus includes first and second light pulse generators (1, 2) respectively generating first and second light pulses with first and second pulse periods, an optical system combining the first and second light pulses and focusing the combined light pulses onto a sample, and a detector (10) detecting the second light pulses intensity-modulated by stimulated Raman scattering generated by focusing of the combined light pulses onto the sample. The second light pulse generator divides each raw light pulse emitted with the second pulse period into two light pulses, delays one of the two light pulse with respect to the other thereof and combines the one light pulse divided from one raw light pulse and delayed, with the other light pulse divided from another raw light pulse emitted after the one raw light pulse, to generate the second light pulse.
摘要:
The invention provides an optical microscope that prevents an increase in the complexity of the light source system and is equipped with optics readily capable of adequate operation even when the modulation frequency is increased in order to reduce the impact of the intensity noise of the laser, etc. This optical microscope 100 irradiates a sample 6 with a first train of optical pulses having a first optical frequency, which is generated by a first light source, and a second train of optical pulses having a second optical frequency, which is temporally synchronized with the first train of optical pulses and is generated by a second light source, and detects light scattered from the sample 6. The repetition frequency of the train of optical pulses generated by the first light source is an integral sub-multiple of the repetition frequency of the train of optical pulses generated by the second light source.
摘要:
The invention provides an optical microscope that prevents an increase in the complexity of the light source system and is equipped with optics readily capable of adequate operation even when the modulation frequency is increased in order to reduce the impact of the intensity noise of the laser, etc. This optical microscope 100 irradiates a sample 6 with a first train of optical pulses having a first optical frequency, which is generated by a first light source, and a second train of optical pulses having a second optical frequency, which is temporally synchronized with the first train of optical pulses and is generated by a second light source, and detects light scattered from the sample 6. The repetition frequency of the train of optical pulses generated by the first light source is an integral sub-multiple of the repetition frequency of the train of optical pulses generated by the second light source.
摘要:
A solid-state image pickup device capable of taking more light into light receiving regions is provided. The solid-state image pickup device of the present invention includes: a photoelectric conversion unit having a plurality of light receiving regions that are two-dimensionally arrayed, the photoelectric conversion unit for photoelectrically converting light incident on each of the light receiving regions, and outputting an electric signal according to the intensity of the incident light; a lens unit comprising a plurality of converging lenses provided on an upper layer of the photoelectric conversion unit, each of the converging lens being provided corresponding to a set of continuous first to third light receiving regions; and a dispersing element provided between the photoelectric conversion unit and the lens unit, the dispersing element being formed of a medium whose refractive index varies periodically, and diffracting beams of a first wavelength band and of a third wavelength band, having been transmitted through the converging lens, and directing the beams onto the first light receiving region and the third light receiving region, and transmitting, without diffracting, a beam of a second wavelength band, having been transmitted through the converging lens, and directing the beam onto the second light receiving region.
摘要:
To obtain an optical pulse evaluation device and an in-service optical pulse evaluation device, which are capable of characteristics evaluation of an optical pulse itself or a sample launched therein, in a relatively high bit-rate region. Optical pulse 42 output repeatedly from an optical pulse light source 43 at a frequency fREP passes through sample 93 n sample stage 91 to be scanned by tunable wavelength optical band pass filter 47. A detection result by photodiode 51 is input in phase detection circuit 45 accompanying with the reference frequency fREP and the result is operated by operation unit 58C of personal computer 52 to know a spectral phase and a spectral intensity of the optical pulse passed through sample 93. Correcting this by applying the operation result in the state, where sample 93 has been removed enables to evaluate characteristics such as deterioration of optical pulse 42 by using sample 93. It is also possible to evaluate a waveform of optical pulse 42 as a light source. The present invention can evaluate the optical pulse in in-service.
摘要:
The present invention provides a method for narrowing a spectral width that can also be adapted to an ultrashort optical pulse emitted from a wavelength tunable light source, and that can provide an output optical pulse with a narrow spectral width and a low noise component, and an optical element and a light source device that use the method for narrowing a spectral width. The method includes using an optical waveguide member (2) to cause a soliton effect in an input optical pulse (1) within the optical waveguide member (2), thereby narrowing a spectral width of the input optical pulse (1) to provide an output optical pulse (3), the optical waveguide member (2) having dispersion characteristics such that the average of a second-order dispersion value (β2) with respect to the input optical pulse (1) is negative, and the absolute value of the second-order dispersion value (β2) increases in a propagation direction of the input optical pulse (1).
摘要:
A solid-state image pickup device capable of taking more light into light receiving regions is provided. The solid-state image pickup device of the present invention includes: a photoelectric conversion unit having a plurality of light receiving regions that are two-dimensionally arrayed, the photoelectric conversion unit for photoelectrically converting light incident on each of the light receiving regions, and outputting an electric signal according to the intensity of the incident light; a lens unit comprising a plurality of converging lenses provided on an upper layer of the photoelectric conversion unit, each of the converging lens being provided corresponding to a set of continuous first to third light receiving regions; and a dispersing element provided between the photoelectric conversion unit and the lens unit, the dispersing element being formed of a medium whose refractive index varies periodically, and diffracting beams of a first wavelength band and of a third wavelength band, having been transmitted through the converging lens, and directing the beams onto the first light receiving region and the third light receiving region, and transmitting, without diffracting, a beam of a second wavelength band, having been transmitted through the converging lens, and directing the beam onto the second light receiving region.