Abstract:
Provided is a method and apparatus for transmitting a synchronization signal for cell search in an Orthogonal Frequency Division Multiplexing (OFDM) communications system. The method includes acquiring Primary Synchronization CHannel (P-SCH) sequence and Secondary Synchronization CHannel (S-SCH) sequence; mapping the P-SCH sequence and the S-SCH sequence onto subcarriers; generating OFDM symbols including the P-SCH sequence and the S-SCH sequence mapped onto subcarriers; and transmitting the OFDM symbols, wherein a frame comprising a plurality of OFDM symbols, a part of the plurality of OFDM symbols in the frame is used for transmitting Synchronization CHannel (SCH) comprising P-SCH and S-SCH, and wherein the P-SCH and the S-SCH are mapped to adjacent OFDM symbols and the S-SCH is mapped to subcarriers with a predetermined interval in a frequency domain within an OFDM symbol.
Abstract:
A method and apparatus are provided for transmitting control information in a base station for a wireless communication system. The method includes transmitting, to a terminal, information associated with a number of Orthogonal Frequency Division Multiplexing (OFDM) symbols carrying control channels; determining a set of control channel candidates based on an IDentifier (ID) of the terminal; selecting at least one control channel candidate from among the set of control channel candidates; and transmitting the control information to the terminal through the selected at least one control channel candidate. Each control channel candidate included in the set of control channel candidates consists of one, two, four, or eight control channel elements (CCEs) existing in the OFDM symbols.
Abstract:
A method and apparatus for transmitting/receiving pilot symbols for demodulation of control channel information in the uplink of a wireless communication system are provided. When an Evolved Node B (ENB) expects to receive both the Channel Quality Information (CQI) and the Acknowledgement (ACK)/Negative ACK (NACK) from a User Equipment (UE) in a certain subframe, if the UE transmits only the CQI channel, the ENB is prevented to detect the nonexistent ACK/NACK information from the CQI channel, thereby avoiding false alarm.
Abstract:
Methods and apparatus are provided for communication between a User Equipment (UE) and a Node B in a communication system. The UE generates a Media Access Control-Protocol Data Unit (MAC-PDU) including scheduling information having information representing an amount of packet data to be transmitted. The MAC-PDU including the scheduling information is transmitted to the Node B. The information representing the amount of packet data exists per priority queue.
Abstract:
A method and apparatus are provided for transmitting user equipment (UE) status information in communication with one serving Node B and at least one non-serving Node B in a mobile communication system. The method and apparatus comprise generating transport channel data including UE status information; transmitting the transport channel data to the serving Node B and the at least one non-serving Node B, receiving a response signal for the transport channel data from the serving Node B, and retransmitting the transport channel data if the response signal received from the serving Node B is a non-acknowledge (NACK) signal, and ending the retransmission of the transport channel data if the response signal received from the serving Node B is an acknowledge (ACK) signal.
Abstract:
Methods and apparatus are provided for receiving a physical downlink control channel in a wireless communication system. The physical downlink control channel is received. The physical downlink control channel is decoded. A scheduling type is determined using scheduling type information in the physical downlink control channel. Scheduling information is determined for a data channel according to the scheduling type.
Abstract:
Provided is a resource allocation method that considers frequency scheduling gain and frequency diversity gain when uplink packet data is transmitted in a wireless communication system based on Orthogonal Frequency Division Multiplexing (OFDM). A method is provided in which Localized Frequency Division Multiple Access (LFDMA) technology capable of obtaining the frequency scheduling gain and Distributed Frequency Division Multiple Access (DFDMA) technology capable of obtaining the frequency diversity gain are mixed. A method is provided which signals sub-carrier sets mapped to the DFDMA and LFDMA, to terminals.
Abstract:
An apparatus and method are provided for setting gain factors for dedicated physical channels in a mobile communication system. The UE receives configuration information indicating uplink dedicated physical channel configuration. The UE sets a gain factor of a dedicated physical control channel (DPCCH) to 1 in the case that no DPDCH is configured. The UE calculates a gain factor of a enhanced dedicated physical control channel (E-DPCCH) using the gain factor of the DPCCH.
Abstract:
A system and method are provided for setting gain factors for dedicated physical channels in a mobile communication system supporting E-DCH service. If the E-DCH is established without the legacy DCH, the UE sets a gain factor for a DPCCH related to the DCH to a predetermined constant and calculates gain factors for dedicated physical channels related to the E-DCH using the gain factor of the DPCCH. In another embodiment of the present invention, if the E-DCH is established without the legacy DCH, the RNC sets a gain factor for a DPCCH related to a virtual DCH to a predetermined constant and sends channel configuration information including the gain factor to the UE.
Abstract:
An apparatus and method in which an Enhanced Uplink Dedicated transport CHannel (EUDCH) is used in a Wideband Code Division Multiple Access (WCDMA) system is provided. In a User Equipment (UE), when physical channels for transmitting EUDCH data are transmitted in addition to existing physical channels, a Peak-to-Average Power Ratio (PAPR) of an uplink transport signal increases. The increase in PAPR depends upon Orthogonal Variable Spreading Factor (OVSF) codes allocated to the corresponding physical channels and In-phase/Quadrature-phase (I/Q) channels. Therefore, the apparatus and method allocate optimum OVSF codes and I/Q channels to EUDCH-related physical channels in order to minimize an increase in PAPR due to EUDCH.