Abstract:
A method for removing SOx from a gas by using a polyol composite solution is provided. The polyol composite solution is made by mixing a polyol with an organic acid and/or organic acid salt, the polyol composite solution is brought into contact with the gas containing SOx to absorb the SOx in the gas, wherein x=2 and/or 3, and the polyol refers to an organic compound other than ethylene glycol and polyethylene glycol, which contains simultaneously two or more than two hydroxyl groups in a same organic molecule.
Abstract:
A desulfurization and denitration agent which is a mixture of polyalcohol and/or polyglycol substances, polycarboxylic acid substances and alkaline substances heated to above 90° C. and yielding, after condensation and/or polymerization, macromolecular or high-polymer ethers and/or esters for use in removing sulfur dioxides and/or nitrogen oxides from gases.
Abstract:
A method and device for waste gas dedusting and a dedusting agent used in the method. A dust-containing waste gas (1) and an organic dedusting agent (4) are introduced into a dedusting tower (3), respectively, and make contact with each other in the tower; at least part of the water vapor in the dust-containing waste gas (1) is condensed, and the organic dedusting agent (4) and the condensed water adsorb solid particles, acidic pollutants, organic pollutants and/or heavy metal compounds in the dust-containing waste gas; and the resulting purified gas (2) is emptied out or subjected to a subsequent process. The organic dedusting agent (4) comprises a non-toxic and high boiling point organic solvent composition, being two or more selected from cooking oil, silicone oil, modified silicone oil, liquid-state asphalt oil, tung tree seed oil, liquid-state paraffin wax oil, mineral oil, palm oil and waste cooking oil.
Abstract:
A method for removing SOx from a gas by using a modified polyethylene glycol solution to absorb the SOx in the gas. The modified polyethylene glycol solution is contacted with the gas containing SOx to absorb the SOx in the gas, wherein x=2 and/or 3, the modified polyethylene glycol is a product derived from etherifying hydroxyl groups in the molecules of ethylene glycol and/or polyethylene glycol and has a general formula: R1—(O—C2H4)n—O—R2, where n is a positive integer, R1 and R2 are the same or different and are each independently alkyl, alkenyl, alkynyl, acyl or aryl.
Abstract:
A method for removing SOx from a gas using an ethylene glycol composite solution is provided. The ethylene glycol composite solution is made by mixing ethylene glycol and/or polyethylene glycol with an organic acid and/or organic acid salt containing no nitrogen atom in a molecule, the ethylene glycol composite solution is brought into contact with the gas containing SOx to absorb the SOx in the gas, wherein x=2 and/or 3. The ethylene glycol composite solution with absorbed SOx is regenerated by one or more of a heating method, a vacuum method, a gas stripping method, an ultrasonication method, a microwave method, and a radiation method to release by-products of sulfur dioxide and sulfur trioxide, and the regenerated ethylene glycol composite solution is recycled for use. This method can be used for desulfurization of flue gas, burning gas, coke-oven gas, synthesis waste gas from dyestuff plants, sewage gas from chemical fiber plants, and other industrial raw material gases or waste gases containing SOx.
Abstract:
A method for removing SOx from a gas by using a modified polyethylene glycol solution to absorb the SOx in the gas. The modified polyethylene glycol solution is contacted with the gas containing SOx to absorb the SOx in the gas, wherein x=2 and/or 3, the modified polyethylene glycol is a product derived from etherifying hydroxyl groups in the molecules of ethylene glycol and/or polyethylene glycol and has a general formula: R1—(O—C2H4)n—O—R2, where n is a positive integer, R1 and R2 are the same or different and are each independently alkyl, alkenyl, alkynyl, acyl or aryl.
Abstract:
A method and device for waste gas dedusting and a dedusting agent used in the method. A dust-containing waste gas (1) and an organic dedusting agent (4) are introduced into a dedusting tower (3), respectively, and make contact with each other in the tower; at least part of the water vapor in the dust-containing waste gas (1) is condensed, and the organic dedusting agent (4) and the condensed water adsorb solid particles, acidic pollutants, organic pollutants and/or heavy metal compounds in the dust-containing waste gas; and the resulting purified gas (2) is emptied out or subjected to a subsequent process. The organic dedusting agent (4) comprises a non-toxic and high boiling point organic solvent composition, being two or more selected from cooking oil, silicone oil, modified silicone oil, liquid-state asphalt oil, tung tree seed oil, liquid-state paraffin wax oil, mineral oil, palm oil and waste cooking oil.
Abstract:
A desulfurization and denitration agent which is a mixture of polyalcohol and/or polyglycol substances, polycarboxylic acid substances and alkaline substances heated to above 90° C. and yielding, after condensation and/or polymerization, macromolecular or high-polymer ethers and/or esters for use in removing sulfur dioxides and/or nitrogen oxides from gases.
Abstract:
A method for removing SOx from a gas by using a compound alcohol-amine solution is provided. The compound alcohol-amine solution is made by mixing ethylene glycol and/or polyethylene glycol with hydroxyl and/or carboxyl organic compound having basic group containing nitrogen. The compound alcohol-amine solution is contacted with the gas containing SOx to absorb the SOx in the gas, wherein x=2 and/or 3. The compound alcohol-amine solution with absorbed SOx is regenerated by one or more of heating method, vacuum method, gas stripping method, ultrasonic method, microwave method, and radiation method to release by-products of sulfur dioxide and sulfur trioxide, and the regenerated compound alcohol-amine solution is recycled for use. This method can be used for removing SOx from flue gas, burning gas, coke-oven gas, synthesis waste gas from dyestuff plants, sewage gas from chemical fiber plants, and other industrial raw material gases or waste gases containing SOx.
Abstract:
An ethylene glycol composite solution is used for removing SOx from a gas. The ethylene glycol composite solution is made by mixing ethylene glycol and/or polyethylene glycol with an organic acid and/or organic acid salt containing no nitrogen atom in a molecule. The ethylene glycol composite solution is brought into contact with the gas containing SOx to absorb the SOx in the gas. The ethylene glycol composite solution loaded with absorbed SOx is regenerated by heating, vacuuming, gas stripping, ultrasonic treatment, microwave treatment, or radiation treatment to release by-products of sulfur dioxide and sulfur trioxide, and the regenerated ethylene glycol composite solution is recycled for use.