Abstract:
A method uses anionic and cationic polymers added in, any order or simultaneously, to aqueous media for the removal of substances. The sequential addition of the two biopolymers, anionic xanthan, followed by cationic chitosan, causes the rapid formation of very large and cohesive fibrillar aggregates that may exhibit high solids to liquid ratios and that quickly settle out from the aqueous media. The aqueous media can be easily separated from the large fibrillar aggregates by settling under gravity or by filtration through a porous containment device, such as a synthetic or non-synthetic woven or non-woven fabric including a geotextile fabric or a solid containment device containing a solid mesh screen.
Abstract:
Disclosed herein are fiber reinforced cement composite materials incorporating a 3-mode fiber blend that includes cellulose pulp and synthetic fibers in a ratio selected to provide the composite material with improved water absorption characteristics and the same or improved mechanical properties as compared to equivalent composite materials reinforced with predominantly or all cellulose fibers. Also disclosed herein are fiber blends comprised of a combination of cellulose fibers and polypropylene fibers adapted to reinforce cementitious composite articles manufactured by the Hatschek process and autoclave cured.
Abstract:
Protected prefinished fiber cement articles are manufactured by applying a protective layer on the finished surface of a fiber cement article. The protective layer protects the finish layer of the prefinished fiber cement article during handling, storage, and transport. Removing the protective layer leaves no residue on the finish layer, does not damage the finish layer, and does not substantially tear the protective layer. Protected prefinished fiber cement article are typically stacked on pallets for storage and transport. Optionally, spacers may be placed between the stacked protected prefinished fiber cement article.
Abstract:
A method uses anionic and cationic polymers added in, any order or simultaneously, to aqueous media for the removal of substances. The sequential addition of the two biopolymers, anionic xanthan, followed by cationic chitosan, causes the rapid formation of very large and cohesive fibrillar aggregates that may exhibit high solids to liquid ratios and that quickly settle out from the aqueous media. The aqueous media can be easily separated from the large fibrillar aggregates by settling under gravity or by filtration through a porous containment device, such as a synthetic or non-synthetic woven or non-woven fabric including a geotextile fabric or a solid containment device containing a solid mesh screen.
Abstract:
Methylated polystyrene having pendant N-halamine and N-halamine precursor groups. Biocidal particles have been prepared by reacting highly crosslinked methylated polystyrene beads as starting materials with various N-halamine precursor compounds. The resulting polymer beads are halogenated with chlorine or bromine. The porous beads will be useful in disinfection applications as well as for sanitization and controlling noxious odor when mixed with absorbent materials in items such as disposable diapers, infant swimwear, incontinence pads, bandages, sanitary napkins, pantiliners, mattress covers, shoe inserts, sponges, animal litter, carpets, and fabrics.
Abstract:
N-halaminehydantoinyl epoxide compounds which can be used for the construction of coatings and materials which can be rendered biocidal by exposure to halogen solutions either before or after curing the coating or material are disclosed. The biocidal coatings and materials can then be used to inactivate pathogenic microorganisms such as bacteria, fungi, and yeasts, as well as virus particles, which can cause infectious diseases, and those microorganisms which cause noxious odors and unpleasant coloring such as mildew. The coatings are compatible with a variety of substrates including, but not limited to, cellulose, chitin, chitosan, synthetic fibers, cement grout, latex caulk, acrylic films, polyurethanes, plastics and paints.
Abstract:
Heterocyclic and acyclic silane monomers and siloxane polymers, and their halogenated derivatives, are provided for the purpose of functionalizing surfaces or materials so as to render them biocidal upon exposure to oxidative halogen solutions. The biocidal function can be imparted either before or after bonding or adhesion to the surface or material. The biocidal surfaces and materials can then be used to inactivate pathogenic microorganisms such as bacteria, fungi, and yeasts, as well as virus particles, which can cause infectious diseases, and those microorganisms which cause noxious odors and unpleasant coloring such as mildew. Examples of surfaces and materials which can be rendered biocidal in this invention include, but are not limited to, cellulose, chitin, chitosan, synthetic fibers, glass, ceramics, plastics, rubber, cement grout, latex caulk, porcelain, acrylic films, vinyl, polyurethanes, silicon tubing, marble, metals, metal oxides, and silica.
Abstract:
Methylated polystyrene having pendant N-halamine and N-halamine precursor groups. Biocidal particles have been prepared by reacting highly crosslinked methylated polystyrene beads as starting materials with various N-halamine precursor compounds. The resulting polymer beads are halogenated with chlorine or bromine. The porous beads will be useful in disinfection applications as well as for sanitization and controlling noxious odor when mixed with absorbent materials in items such as disposable diapers, infant swimwear, incontinence pads, bandages, sanitary napkins, pantiliners, mattress covers, shoe inserts, sponges, animal litter, carpets, and fabrics.
Abstract:
Methylated polystyrene having pendant N-halamine and N-halamine precursor groups. Biocidal particles have been prepared by reacting highly crosslinked methylated polystyrene beads as starting materials with various N-halamine precursor compounds. The resulting polymer beads are halogenated with chlorine or bromine. The porous beads will be useful in disinfection applications, as well as for sanitization and controlling noxious odor when mixed with absorbent materials in items such as disposable diapers, infant swimwear, incontinence pads, bandages, sanitary napkins, pantiliners, mattress covers, shoe inserts, sponges, animal litter, carpets, and fabrics.
Abstract:
Method for preparing biocidal halogenated polystyrene hydantoins. The biocidal polymers poly-1,3-dichloro-5-methyl-5-(4′-vinylphenyl)hydantoin, poly-1,3-dibromo-5-methyl-5-(4′-vinylphenyl)hydantoin, and their monohalogenated alkali metal salts and protonated derivatives have been prepared as porous beads by use of highly crosslinked polystyrene beads as starting materials. The porous beads will be useful in water and air disinfection applications when employed in cartridge filters and carafes (for water), as well as for controlling noxious odor when mixed with absorbent materials in items such as disposable diapers, incontinence pads, bandages, sanitary napkins, pantiliners, mattress covers, shoe inserts, sponges, animal litter, carpets, fabrics, and air filters or the like.