Abstract:
An organic layer deposition apparatus for forming an organic layer on a substrate includes: a deposition source configured to discharge a deposition material; a deposition source nozzle unit arranged at a side of the deposition source and including a plurality of deposition source nozzles; and a patterning slit sheet facing the deposition source nozzle unit and including a plurality of patterning slits and at least one spacer arranged between a pair of adjacent patterning slits of the plurality of patterning slits, the patterning slit sheet being smaller than the substrate in at least one of a first direction or a second direction perpendicular to the first direction, and the substrate is spaced apart from the organic layer deposition apparatus by a predetermined distance, and at least one of the substrate or the organic layer deposition apparatus is movable relative to the other.
Abstract:
A method of manufacturing a display device having a display panel that includes a first electrode, a light emitting layer formed on the first electrode, and a second electrode on the light emitting layer, the manufacturing method comprising: aging the display panel by applying a predetermined electrical signal and a predetermined temperature so that the luminance of the light emitting layer lies between about 10 nits and 10,000 nits.
Abstract:
An organic light emitting device according to an exemplary embodiment of the present invention includes: a substrate; a first signal line and a second signal line formed on the substrate and intersecting each other; a common voltage line formed on the substrate, and intersecting one of the first signal line and the second signal line; a switching thin film transistor connected to the first signal line and the second signal line; a driving thin film transistor connected to the switching thin film transistor; an insulating layer covering the first signal line, the second signal line, the switching thin film transistor, and the driving thin film transistor; a pixel electrode formed on the insulating layer, and electrically connected to the driving thin film transistor; an organic light emitting member formed on the pixel electrode and including an emission layer and a member layer; and a common electrode formed on the organic light emitting member, wherein the member layer is made of a plurality of layers including electrons or holes, and at least one layer of the member layer is disposed between the common voltage line and the common electrode to electrically connect between the common voltage line and the common electrode.
Abstract:
An organic light emitting device according to an exemplary embodiment of the present invention includes a plurality of first, second, and third pixels for displaying different colors, wherein the plurality of first and second pixels are alternately arranged in a first column, the plurality of third pixels are continuously arranged in a second column, and an interval between the third pixels is larger than an interval between the first pixel and the second pixel.
Abstract:
A display device includes pixels which represent first, second and third colors and white, a signal controller which operates a white initial luminance value of the white and first, second and third luminance compensation values of the first, second and third colors based on input image signals of the first, second and third colors, generates a white output image signal of the white based on a sum of at least one portion of the first, second and third luminance compensation values and the white initial luminance value, and generates first, second and third output image signals of the first, second and third colors based on remaining first, second and third luminance compensation values, and a data driver which converts the white output image signal and the first, second and third output image signals into data voltages and supplies the data voltages to the pixels to display an image.
Abstract:
An organic light-emitting diode (OLED) display panel includes a plurality of pixels displaying a plurality of colors. Each pixel has an OLED element. A gamma voltage-generating section generates a reference gamma voltage based on a gamma curve in which the lowest gradation of the total number of gradations is mapped as a negative data voltage with respect to a reference voltage. A data conversion section converts a first data signal into a second data signal that includes data corresponding to the lowest gradation. A source drive section converts the second data signal into a third data signal by using the reference gamma voltage to provide the OLED display panel with the third data signal.
Abstract:
An organic layer deposition apparatus for forming an organic layer on a substrate includes: a deposition source configured to discharge a deposition material; a deposition source nozzle unit arranged at a side of the deposition source and including a plurality of deposition source nozzles; and a patterning slit sheet facing the deposition source nozzle unit and including a plurality of patterning slits and at least one spacer arranged between a pair of adjacent patterning slits of the plurality of patterning slits, the patterning slit sheet being smaller than the substrate in at least one of a first direction or a second direction perpendicular to the first direction, and the substrate is spaced apart from the organic layer deposition apparatus by a predetermined distance, and at least one of the substrate or the organic layer deposition apparatus is movable relative to the other.
Abstract:
An organic light emitting device according to an exemplary embodiment of the present invention includes a plurality of first, second, and third pixels for displaying different colors, wherein the plurality of first and second pixels are alternately arranged in a first column, the plurality of third pixels are continuously arranged in a second column, and an interval between the third pixels is larger than an interval between the first pixel and the second pixel.
Abstract:
An organic light emitting diode (OLED) display is disclosed. In one aspect, the OLED display includes a plurality of pixels in a matrix. The OLED display may include a substrate, a translucent layer formed on the substrate, a first electrode formed on the translucent layer, an organic light emitting member formed on the first electrode, and a second electrode formed on the organic light emitting member and including a reflective material. According to some aspects, the thickness of the organic light emitting member of the pixels forming the OLED display may be different than one another, or portions of each pixel may have different thickness for the organic light emitting members forming the pixel. With different thicknesses, the optical characteristics of the pixels forming the OLED display may be effectively compensated for luminance and color purity. As a result, the lateral viewing angle of an OLED display may be improved.
Abstract:
An organic light emitting display includes a base substrate, a driving transistor arranged on the base substrate, a first electrode electrically connected to the driving transistor, an organic light emitting layer arranged on the first electrode to generate a light, a second electrode arranged on the organic light emitting layer, an opposite substrate facing the base substrate and including micro-lenses to disperse the light generated by the organic light emitting layer, and a sub-electrode arranged on at least one of the micro-lenses, the sub-electrode making contact with the second electrode to be electrically connected to the second electrode.