摘要:
An organic light emitting display apparatus and a method of manufacturing the organic light emitting display apparatus are disclosed. In one embodiment, the organic light emitting display apparatus includes: i) a substrate, ii) a display unit formed on the substrate, iii) an encapsulation substrate formed over the display unit, iv) a sealant bonding the substrate and the encapsulation substrate and v) a filler formed in the space defined by i) the substrate, ii) the sealant and iii) the encapsulation substrate, wherein the filler comprises a first region and a second region which have different levels of hardness.
摘要:
Embodiments of the disclosure provide an organic light-emitting display device and a manufacturing method of the organic light-emitting display device. The organic light-emitting display device includes a substrate; a display unit formed on the substrate; an encapsulation substrate formed above the display unit; a first sealant bonding the substrate and the encapsulation substrate; and a filler disposed between the substrate and the encapsulation substrate. In addition, a second sealant is provided to separate the first sealant and the filler. The adhesive strength of the second sealant is greater than an adhesive strength of the filler.
摘要:
A sealing filler for an organic light emitting device display includes a siloxane polymer having a surface tension of about 20 dyn/cm or less. The siloxane polymer may be represented by where each of R1 to R10 is independently a non-polar substituent, and n ranges from 20 to 50.
摘要:
This organic light emitting apparatus includes: a filling material between a diode substrate on which an organic light emitting unit is formed and an encapsulation substrate; and an organic protection layer that is interposed between the organic light emitting unit and the filling material and includes at least one thermally depositable organic material.
摘要:
A flat panel display apparatus including: a mother substrate; a display unit provided on the mother substrate; an opposing mother substrate facing the mother substrate such that the display unit is interposed between the mother substrate and the opposing mother substrate; a sealing member provided between the mother substrate and the opposing mother substrate to contact the substrate and/or the opposing mother substrate and arranged outside or along a periphery of the display unit; and an auxiliary layer provided between the mother substrate and the opposing mother substrate to prevent a warpage of the mother substrate and/or the opposing mother substrate.
摘要:
Linear deposition sources are disclosed. In one embodiment, the linear deposition source includes a container accommodating evaporation material and a heater configured to generate heat energy such that vaporized material is discharged uniformly onto a substrate on which a deposition layer is formed. The heater is provided on the container, wherein a portion of the heater positioned at a center portion of the container in the longitudinal direction generates more heat energy than the other portion of the heater. The heater includes a coil configured in a sinusoidal pattern, wherein the curvature pitch or height of the portion of the coil positioned at the center portion of the container in the longitudinal direction is set to be different from that of the other portion of the coil. Further, the resistance of the portion of the coil positioned at the center portion of the container in the longitudinal direction may be set to be greater than that of the other portion of the coil.
摘要:
An organic light emitting diode (OLED) display is disclosed. In one embodiment, the OLED display includes i) a display substrate, ii) an OLED array, iii) an encapsulation substrate arranged opposite to the display substrate with respect to the OLED array, iv) a sealing member configured to seal the display substrate and the encapsulation substrate and v) a filler applied in a space formed between the display substrate and the encapsulation substrate. In one embodiment, the height of the filler is more than about 1.2 times the height of the OLED array.
摘要:
An organic light-emitting display apparatus for selectively realizing circular polarization according to external light conditions, including a substrate; an organic light-emitting device on the substrate; a sealing member on the organic light-emitting device; a phase retardation layer on a surface of the substrate, the organic light-emitting device, or the sealing member; and a linear polarization layer on another surface of the substrate, the organic light-emitting device, or the sealing member, wherein the linear polarization layer is located to be closer to a source of external light than the phase retardation layer, and wherein the linear polarization layer comprises a photochromic material.
摘要:
Provided are an organic light-emitting display device and a manufacturing method of the organic light emitting display device. The organic light-emitting display device includes: a substrate; a display unit formed on the substrate; an encapsulation substrate formed above the display unit; a first sealant bonding the substrate and the encapsulation substrate; a filler formed between the substrate and the encapsulation substrate; and a second sealant interposed between the first sealant and the filler so as to separate the filler from the first sealant, wherein a distance of a portion of the substrate and the encapsulation substrate is smaller than that of other portions of the substrate and the encapsulation substrate. Accordingly, penetration of impurities, such as oxygen or water, from the outside into the organic light emitting display device is prevented.
摘要:
Disclosed are light emitting display and method of manufacturing the same. The light emitting display according to the present embodiments includes a first substrate including a plurality of light emitting devices and a pad portion, all of which are formed therein; a second substrate disposed to face the light emitting devices; and a bonding layer bonded to the light emitting devices and the second substrate, wherein a stepped portion is formed at a predetermined depth in an edge of the second substrate that is adjacent to the pad portion, and the bonding layer is extended to the stepped portion. Since the bonding layer is not bonded to the pad portion due to the depth of the stepped portion when the second substrate is bonded to the first substrate, poor electrical contact may be prevented, and it easy to remove the encapsulation substrate to expose the pad portion. Also, the manufacturing process is simple, the process uniformity is high and the process time is short since the bonding layer is formed in the front of the second substrate.