Abstract:
The present invention provides for a solution to reduce locking time with satisfactory performance without the need for significant footprint area for the phase lock loop (PLL) circuits by boosting phase frequency detector (PFD) and charge pump (CP) gains through various circuitry configurations that employ one or more flip-flops, delay elements and advanced circuitry techniques.
Abstract:
A frequency divider comprises a phase selector and a timing circuit. The phase selector is arranged to receive a plurality of input signals and a plurality of control signals and output a plurality of output signals according to the control signals, wherein a predetermined reference voltage and the input signals are selectively chosen to generate the output signals according to the control signals, and the input signals are of a same frequency but different phases. The timing circuit is arranged to receive the output signals and generate the control signals according to the output signals.
Abstract:
In one embodiment, the present invention includes an apparatus having a voltage controlled oscillator (VCO) to generate a first clock signal having a frequency controlled by a bias current coupling ratio of first and second bias currents, and a control circuit coupled to the VCO to generate a first pair of control signals to adjust the bias current coupling ratio. Other embodiments are described and claimed.
Abstract:
The frequency calibration device includes a logic unit for gating the clock signal according to a gating window signal to generate a gated clock signal, and a divider for dividing the gated clock signal by a divisor in frequency to generate a frequency indication signal, and output digits of the divider are set to the divisor in a calibration cycle, and the frequency indication signal is a most significant bit of the output digits.
Abstract:
A charge pump being disposed in a phase locking system. The charge pump includes a sourcing element, a draining element and an offset element. The sourcing element is arranged to selectively source a first current into an output terminal of the charge pump according to a first control signal, and the draining element is arranged to selectively drain a second current from the output terminal according to a second control signal. The offset element is arranged to selectively conduct an offset current via the output terminal according to a third control signal, and one of the sourcing element and the draining element is disabled when the phase locking system is in a phase-locked state.
Abstract:
In one embodiment, the present invention includes an apparatus having a voltage controlled oscillator (VCO) to generate a first clock signal having a frequency controlled by a bias current coupling ratio of first and second bias currents, and a control circuit coupled to the VCO to generate a first pair of control signals to adjust the bias current coupling ratio. Other embodiments are described and claimed.
Abstract:
A stream of data may flow over a fiber or other medium without any accompanying clock signal. The receiving device may then be required to process this data synchronously. Embodiments describe clock and data recovery (CDR) circuits which may sample a data signal at a plurality of sampling points to partition a clock cycle into four phase regions P1, P2, P3, and P4 which may be represented on a phase plane being divided into four quadrants. A relative phase between a data signal transition edge and a clock phase may be represented by a phasor on the phase plane. The clock phase and frequency may be adjusted by determining the instantaneous location of the phasor and the direction of phasor rotation in the phase plane.
Abstract:
The present invention provides for a solution to reduce locking time with satisfactory performance without the need for significant footprint area for the phase lock loop (PLL) circuits by boosting phase frequency detector (PFD) and charge pump (CP) gains through various circuitry configurations that employ one or more flip-flops, delay elements and advanced circuitry techniques.
Abstract:
A charge pump being disposed in a phase locking system. The charge pump includes a sourcing element, a draining element and an offset element. The sourcing element is arranged to selectively source a first current into an output terminal of the charge pump according to a first control signal, and the draining element is arranged to selectively drain a second current from the output terminal according to a second control signal. The offset element is arranged to selectively conduct an offset current via the output terminal according to a third control signal, and one of the sourcing element and the draining element is disabled when the phase locking system is in a phase-locked state.
Abstract:
A frequency divider comprises a phase selector and a timing circuit. The phase selector is arranged to receive a plurality of input signals and a plurality of control signals and output a plurality of output signals according to the control signals, wherein a predetermined reference voltage and the input signals are selectively chosen to generate the output signals according to the control signals, and the input signals are of a same frequency but different phases. The timing circuit is arranged to receive the output signals and generate the control signals according to the output signals.