Abstract:
A millimeter-wave transistor device includes a plurality of sub-cells arranged in matrix array, each of the sub-cells having a longitudinal gate finger elongating along a reference y-axis, a source doping region disposed at one side of the longitudinal gate finger and a drain doping region at the other side of the longitudinal gate finger opposite to the source doping region; and at least three parallel connecting bars extending along a reference x-axis, electrically connecting with respective distal ends of the longitudinal gate finger of each of the sub-cells.
Abstract:
An apparatus for duty cycle calibration includes an input calibration circuit, a delay chain, a first comparator, and a second comparator. The input calibration circuit calibrates an input clock signal according to a first control signal so as to generate an input calibration clock signal. The delay chain includes a plurality of delay units coupled in series, and delays the input calibration clock signal so as to generate a first delay clock signal and a second delay clock signal. At least two of the delay units each have an adjustable delay time which is controlled according to a second control signal. The first comparator compares the input calibration clock signal with the first delay clock signal so as to generate the first control signal. The second comparator compares the input calibration clock signal with the second delay clock signal so as to generate the second control signal.
Abstract:
Phase error of a time-to-digital converter (TDC) within an all-digital phase-locked loop (ADPLL) is compensated by predicting possible phase error, which are predicted according to an estimated quantization error, a period of a digital-controlled oscillator (DCO), a gain of the TDC or a combination thereof. By appropriate inductions, the possible phase error may be further indicated by the quantization error, a code variance corresponding to a half of a reference period received by a TDC module having the TDC, a dividing ratio of a frequency divider of the ADPLL, a fractional number related to the quantization error or a combination thereof. A digital phase error cancellation module is also used for generating the possible phase error for compensating the phase error of the TDC.
Abstract:
The transceiver has a transmitter, a receiver, and a three-port network. The transmitter is configured to transmit an outgoing RF signal. The receiver is configured to receive an incoming RF signal. The three-port network includes: a transmission line, configured to have a line length less than a quarter of a wavelength of the incoming RF signal; an antenna port, configured to connect to an antenna; a receiver port, configured to connect the receiver to the antenna port; and a transmitter port, configured to connect the transmitter to the antenna port and the receiver port through the transmission line.
Abstract:
For decreasing errors within an analog phase-locked loop, an all-digital phase-locked loop (ADPLL) with digital components and digital operations is used. The ADPLL may also be used for direct frequency modulation (DFM). By defining a proportional path gain of an ADPLL by a bandwidth and a reference frequency of the ADPLL, by a TDC gain, a DCO gain, a dividing ratio of a frequency divider, a gain of an amplifier or a combination thereof, the gain of the amplifier may be adjusted so that an optimal loop bandwidth of the ADPLL may be well calibrated. For achieving the aim of entirely digital of the ADPLL, the gains of the TDC and the DCO may be further adjusted in a digital manner.
Abstract:
A digital-controlled oscillator (DCO) is utilized in an all-digital phase-locked loop for eliminating frequency discontinuities. The DCO includes a tank module and a negative gm cell. The tank module comprises a plurality of cells, at least a portion of the cells comprising a first tracking set and a second tracking set for respectively handling an odd bit or an even bit. The odd bit and the even bit are related to an integer signal, a fractional signal or a combination thereof, the fractional signal is indicated by a primary voltage inputted to the DCO. With the DCO, frequency discontinuities and undesired spurs are eliminated.
Abstract:
The calibration method, performed on a phased array device including channel elements coupled in parallel by a transmission line, has the steps of: obtaining channel responses corresponding to the channel elements through the transmission line, and each of the channel responses is obtained when one of the channel elements is turned on, and the rest of the channel elements are turned off; calculating a characteristic value corresponding to the transmission line based on the obtained channel responses of the channel elements; and adjusting a channel parameter of one of the channel elements based on the characteristic value of the transmission line.
Abstract:
An apparatus for duty cycle calibration includes an input calibration circuit, a delay chain, a first comparator, and a second comparator. The input calibration circuit calibrates an input clock signal according to a first control signal so as to generate an input calibration clock signal. The delay chain includes a plurality of delay units coupled in series, and delays the input calibration clock signal so as to generate a first delay clock signal and a second delay clock signal. At least two of the delay units each have an adjustable delay time which is controlled according to a second control signal. The first comparator compares the input calibration clock signal with the first delay clock signal so as to generate the first control signal. The second comparator compares the input calibration clock signal with the second delay clock signal so as to generate the second control signal.
Abstract:
An error protection method for a time-to-digital converter (TDC) decoder of an all-digital phase-locked loop (ADPLL) includes: retrieving a digital code received by the TDC decoder; retrieving a cycle code received by the TDC decoder; performing an exclusive-or operation on a first predetermined bit of the digital code and a second predetermined bit of the cycle code for generating an error protection code; and using the error protection code to fix errors within the cycle code by adding the error protection code into the cycle code and shifting the cycle code by a third predetermined number of bits.
Abstract:
A phased-array transceiver includes: a plurality of antennas; a plurality of transceiving elements respectively coupled to the plurality of antennas, at least one of the transceiving elements comprising a first transmitting circuit and a first receiving circuit; a signal processing block; and a first distributed network, coupled between the signal processing block and the transceiving elements, wherein the transceiving elements, the signal processing block, and the first distributed network are configured as a single chip, and a first path from the antenna through the first receiving circuit to the signal processing block and a second path from the signal processing block through the first transmitting circuit to the antenna share at least partial signal traces of the phased-array transceiver.