Abstract:
The present disclosure is directed to methods for producing butyric acid comprising fermenting a feedstock using a bacterium. The feedstock comprises lactic acid, or the feedstock comprises lactic acid and at least one carbohydrate.
Abstract:
A filtration dehydration apparatus, comprises: a filter, having a filtration layer and an absorption layer while allowing a surface of the filtration layer opposite to the absorption layer to be a first side of the filter, and allowing a surface of the absorption layer opposite to the filtration layer to be a second side of the filter; a supporting structure, for supporting and fixedly secured the filter; a solid collector, for collecting any solid object left on the first side; and an extrusion unit, for pressing the absorption layer so as to squeeze liquid containing in the absorption layer out of the same; wherein the first side is provided for a solid-liquid mixture to be placed thereon for allowing the liquid containing therein to flow into the absorption layer through the filtration layer while enabling any solid object filtered out and thus left on the first side.
Abstract:
A light transformation particle is provided. The light transformation particle of the invention includes a light-shifting layer containing at least one light-emitting material, wherein the light-emitting layer transforms ultraviolet light, yellow-green light, or infrared light to red-orange light or blue-violet light. The light transformation particle further includes a core layer and/or a shell layer. The present invention further provides a photobioreactor containing the light transformation particle of the invention.
Abstract:
An extraction apparatus capable of continuously and efficiently extracting a biological substance is provided. Multiple rotation discs are utilized in the extraction apparatus to significantly improve the efficiency of extracting the biological substance by using an extraction solvent. Specifically, when the extraction solvent is applied to extract lipids from microalgae, retention time of the microalgae in the extraction solvent can be significantly increased, and solubility of the microalgal lipids in the extraction solvent can be improved. Hence, the efficiency of extracting the lipids from the microalgae by using the extraction solvent can be enhanced. On the other hand, owing to the improvement of the efficiency of extracting the lipids from the microalgae, the amount of the extraction solvent can be reduced, and production costs can be reduced as well.
Abstract:
The invention provides a filter structure. A second porous film having a plurality of second holes is disposed on a first porous film having a plurality of first holes. The second holes are smaller than the first holes. The filter structure is dried by an easy and power-saving method such as compression.
Abstract:
The invention provides a multi-functional polymer-entrapped-cell-bead airlift bioreactor for odor or gaseous emission treatment. Especially, it refers to a reactor that mainly treats a low-and-medium gas flow rate and concentration of volatile organic emission or odorous substances. Particularly, it utilizes synthetic material (PAA beads) and microbial entrapment technology as the microbial source and startup mechanism for gaseous emission and odor treatment. Besides, plastic decomposing Thiosphaera pantotropha can be added under certain condition to be triggered to breakdown the synthetic material (PAA beads) to prevent wastes. This will achieve benefits in low cost, high efficiency and zero secondary pollution.
Abstract:
A light transformation particle is provided. The light transformation particle of the invention includes a light-shifting layer containing at least one light-emitting material, wherein the light-emitting layer transforms ultraviolet light, yellow-green light, or infrared light to red-orange light or blue-violet light. The light transformation particle further includes a core layer and/or a shell layer. The present invention further provides a photobioreactor containing the light transformation particle of the invention.
Abstract:
An extraction apparatus capable of continuously and efficiently extracting a biological substance is provided. Multiple rotation discs are utilized in the extraction apparatus to significantly improve the efficiency of extracting the biological substance by using an extraction solvent. Specifically, when the extraction solvent is applied to extract lipids from microalgae, retention time of the microalgae in the extraction solvent can be significantly increased, and solubility of the microalgal lipids in the extraction solvent can be improved. Hence, the efficiency of extracting the lipids from the microalgae by using the extraction solvent can be enhanced. On the other hand, owing to the improvement of the efficiency of extracting the lipids from the microalgae, the amount of the extraction solvent can be reduced, and production costs can be reduced as well.
Abstract:
The present disclosure is directed to methods for producing butyric acid comprising fermenting a feedstock using a bacterium. The feedstock comprises lactic acid, or the feedstock comprises lactic acid and at least one carbohydrate.