Abstract:
A method for providing a hose pipe connection is disclosed. Embodiments of the method start with a pipe having an enlarged end portion. A sleeve is introduced into the end of the flexible hose. The sleeve has an inner diameter that is equal to the inner diameter of the hose. In an embodiment, the inner diameter of the sleeve is increased while the end of the hose is already placed on the sleeve. The hose fitted with the sleeve is then introduced into the enlarged end of the pipe. Crimping of the enlarged end will then secure the sleeve and the hose and provide a fluid tight and mechanically sturdy connection.
Abstract:
The invention concerns a system including a microwave generator and a rectangular guide connected with the generator. The system is adapted to operate in fundamental (H10) or transverse electrical (TE10) mode, and associated with means providing a standing wave pattern. The system also includes many power connectors arranged in the guide at zones of maximum amplitude for one of the components of the electromagnetic field for splitting the generator power. The power connectors are adjusted so that the sum of their reduced admittance levels brought to the splitter input formed by the guide is in a single unit and many sources, respectively connected to a connector of the guide, via insulating means ensuring a power transmission of the connector to the source without reflecting towards the connector and a device adapting impedance of each source, located downstream of the insulating means, between the latter and associated source.
Abstract:
A method for providing a hose pipe connection is disclosed. Embodiments of the method start with a pipe having an enlarged end portion. A sleeve is introduced into the end of the flexible hose. The sleeve has an inner diameter that is equal to the inner diameter of the hose. In an embodiment, the inner diameter of the sleeve is increased while the end of the hose is already placed on the sleeve. The hose fitted with the sleeve is then introduced into the enlarged end of the pipe. Crimping of the enlarged end will then secure the sleeve and the hose and provide a fluid tight and mechanically sturdy connection.
Abstract:
A method for providing a hose pipe connection is disclosed. Embodiments of the method start with a pipe having an enlarged end portion. A sleeve is introduced into the end of the flexible hose. The sleeve has an inner diameter that is equal to the inner diameter of the hose. In an embodiment, the inner diameter of the sleeve is increased while the end of the hose is already placed on the sleeve. The hose fitted with the sleeve is then introduced into the enlarged end of the pipe. Crimping of the enlarged end will then secure the sleeve and the hose and provide a fluid tight and mechanically sturdy connection.
Abstract:
A method for providing a hose pipe connection is disclosed. Embodiments of the method start with a pipe having an enlarged end portion. A sleeve is introduced into the end of the flexible hose. The sleeve has an inner diameter that is equal to the inner diameter of the hose. In an embodiment, the inner diameter of the sleeve is increased while the end of the hose is already placed on the sleeve. The hose fitted with the sleeve is then introduced into the enlarged end of the pipe. Crimping of the enlarged end will then secure the sleeve and the hose and provide a fluid tight and mechanically sturdy connection.
Abstract:
The invention relates to a microwave plasma exciter device comprising: a waveguide containing means (23) for concentrating the microwaves; and means (110, 120) for forming a plasma, which are disposed in a microwave concentration zone.
Abstract:
There is provided a process for sterilizing a dielectric contaminated object having at least one hollow part. The process comprises (a) producing a plasma by submitting a gas or a mixture of gases to an electromagnetic field; (b) treating the exterior of the object by means of an after-glow of the plasma; and (c) treating the at least one hollow part of the object by means of a discharge of the plasma, the discharge being produced inside the at least one hollow part. Step (c) is carried out before or after step (b). This process is particularly useful for sterilizing various medical or dental instruments. There is also provided a device for carrying such a process.
Abstract:
The present invention relates to a device for generating plasma (ionizing gas) by a propagating surface wave. The device comprises a wave launching structure mounted on a plasma vessel and connected to an impedance matching network. The latter comprises a coupler and a tuner which is either formed by a section of a transmission line or is of the lumped circuitry type. The launching structure may either generate an azimuthally symmetric or a non symmetric propagating wave. This invention also relates to a method and a device for shaping plasma which comprises a plasma vessel receiving a surface wave generator and having a serviceable portion of a size and/or shape substantially different from the shape and/or size of the portion of the plasma vessel receiving the wave generator.
Abstract:
The invention relates to a plasma generating device that comprises at least one very high frequency source (>100 MHz) connected via an impedance adaptation device to an elongated conductor attached on a dielectric substrate, at least one means for cooling said conductor, and at least one gas supply in the vicinity of the dielectric substrate on a side opposite to that bearing the conductor. The invention also relates to plasma torches using said device.
Abstract:
The invention relates to a microwave plasma exciter device which includes a waveguide (23) for concentrating the microwaves; and a plasma generator (110, 120) for forming a plasma, which are disposed in a microwave concentration zone.