Abstract:
The present invention relates to a method of determining the genotype of a sample polynucleotide having at least a first variant site. At least a portion of the sample polynucleotide is amplified to obtain first amplicons, the first amplicons including the first variant site. The first amplicons are combined with first and second different polynucleotide controls, the first and second polynucleotide controls differing by at least one base therealong, the position of the at least one differing base corresponding to the first variant site of the sample polynucleotide. A plurality of first duplexes are prepared, each of at least some of the first duplexes comprising (i) a polynucleotide strand of one of the first amplicons and (ii) a complementary polynucleotide strand of the first polynucleotide control. A plurality of second duplexes are prepared, each of at least some of the second duplexes comprising (i) a polynucleotide strand of one of the first amplicons and (ii) a complementary polynucleotide strand of the second polynucleotide control. The first and second duplexes are subjected to temperature gradient electrophoresis (TGE) to obtain first and second electrophoresis data. The genotype of the first variant site of the sample polynucleotide is determiend based on the first and second electrophoresis data.
Abstract:
The present invention relates to a method for determining the presence of a mutation in a first sample comprising first polynucleotides. The reference sample comprises reference polynucleotides. The first sample and a reference sample are subjected to electrophoresis in the presence of at least one intercalating dye. During electrophoresis the temperature of the first sample and the reference sample is changed by an amount sufficient to change an electrophoretic mobility of at least one of the first or reference polynucleotides. Fluorescence intensity data are obtained. The fluorescence intensity data are indicative of the presence of the first and reference polynucleotides. The data are processed to determine the presence of mutation in the first polynucleotides.
Abstract:
A 3D porous metal-organic framework and method of making are described. In some embodiments, a 3D porous metal-organic framework may be based on a trinodal (3,3,4) net of zyg topology by the self-assembly of the nonlinear hexacarboxylate (BHB) with the paddle-wheel Cu2(COO)4 cluster. Although its porosity and surface area are moderate, the open copper sites and optimal pore spaces enable the pore spaces to be fully utilized for methane storage, resulting in a high methane storage density and high absolute volumetric methane storage at room temperature and 35 bar. By the immobilization of high density open metal sites and the deliberate control of the pore space for their efficient methane storage, this porous MOF functions as an efficient media for methane and natural gas storage.
Abstract:
The present invention relates to novel androgen receptor splice variants (AR3, AR4, AR4b, AR5 and AR8) and variants and fragments thereof which have a role in the progression of androgen independent prostate cancer. The invention further relates to compositions and methods which can be used to identify and treat prostate cancer based on these novel androgen receptor splice variants, as well as methods for screening agents which modulate the activity and/or expression of the androgen receptor splice variants. Vectors, host cells and recombinant methods for producing the same and transgenic animals are also provided.
Abstract:
The present invention relates to novel androgen receptor splice variants (AR3, AR4, AR4b, AR5 and AR8) and variants and fragments thereof which have a role in the progression of androgen independent prostate cancer. The invention further relates to compositions and methods which can be used to identify and treat prostate cancer based on these novel androgen receptor splice variants, as well as methods for screening agents which modulate the activity and/or expression of the androgen receptor splice variants. Vectors, host cells and recombinant methods for producing the same and transgenic animals are also provided.
Abstract:
The present invention relates to a method for determining the presence of a mutation in a first sample comprising first nucleotides. The reference sample comprising reference nucleotides. The first sample and a reference sample are subjected to electrophoresis in the presence of at least one intercalating dye. During electrophoresis the temperature of the first sample and the reference sample is changed by an amount sufficient to change an electrophoretic mobility of at least one of the first or reference nucleotides. Fluorescence intensity data are obtained. The fluorescence intensity data are indicative of the presence of the first and reference nucleotides. At least one of the first sample or reference samples comprises products resulting from a polymerase chain reaction (PCR), the products not having been desalted prior to electrophoresis.
Abstract:
A 3D porous metal-organic framework and method of making are described. In some embodiments, a 3D porous metal-organic framework may be based on a trinodal (3,3,4) net of zyg topology by the self-assembly of the nonlinear hexacarboxylate (BHB) with the paddle-wheel Cu2(COO)4 cluster. Although its porosity and surface area are moderate, the open copper sites and optimal pore spaces enable the pore spaces to be fully utilized for methane storage, resulting in a high methane storage density and high absolute volumetric methane storage at room temperature and 35 bar. By the immobilization of high density open metal sites and the deliberate control of the pore space for their efficient methane storage, this porous MOF functions as an efficient media for methane and natural gas storage.
Abstract:
The present invention relates to novel androgen receptor splice variants (AR3, AR4, AR4b, AR5 and AR8) and variants and fragments thereof which have a role in the progression of androgen independent prostate cancer. The invention further relates to compositions and methods which can be used to identify and treat prostate cancer based on these novel androgen receptor splice variants, as well as methods for screening agents which modulate the activity and/or expression of the androgen receptor splice variants. Vectors, host cells and recombinant methods for producing the same and transgenic animals are also provided.
Abstract:
The present invention relates to novel androgen receptor splice variants (AR3, AR4, AR4b, AR5 and AR8) and variants and fragments thereof which have a role in the progression of androgen independent prostate cancer. The invention further relates to compositions and methods which can be used to identify and treat prostate cancer based on these novel androgen receptor splice variants, as well as methods for screening agents which modulate the activity and/or expression of the androgen receptor splice variants. Vectors, host cells and recombinant methods for producing the same and transgenic animals are also provided.