Abstract:
A nozzle (10) comprising a through-hole (20) having an optional initial section (36) in fluid communication with the inlet opening (21) of the through-hole (20), a fluid shearing section (40) in fluid communication with the outlet opening (32) of the through-hole (20), and an optional transition region (38) in fluid communication with the initial section (36) and the fluid shearing section (40). The initial section (36) has a relatively constant cross-sectional shape along at least a 20% portion of its length, a shape that converges to the transition region (38), or both. The transition region (38) is disposed along the through-hole length, with a relatively uniform, diverging, converging, diverging and converging, or converging and diverging cross-sectional area along its length. The fluid shearing section (40) has an upstream end in fluid communication with the transition region (38), and a diverging cross-sectional shape along at least a 20% portion of its length that has a minor axis length and a major axis length.
Abstract:
Illumination articles are described. More specifically, illumination articles that include a wearable device configured for wearing on the head of a wearer, a lightguide and light sources for emitting light into the lightguide are described. The illumination articles allow for wearable devices that uniformly illuminate a working area at high brightness without providing excessive glare to observers. The disclosed illumination article comprises: a wearable device configured for wearing on the head of a wearer, a lightguide disposed on the wearable device, wherein the lightguide is elongated and has a first end and a second end opposite the first end, and a first light source positioned at the first end, for emitting light into the lightguide. The lightguide further comprises a light emitting surface extending generally in an x-direction between the first and second end, and a light reflecting surface positioned opposite to the light emitting surface, wherein the light reflecting surface comprises a plurality of light extractors configured for directing light in a y-direction perpendicular to the x-direction, and wherein the light emitting surface is configured for directing light into an xy-plane.
Abstract:
Light assembly having reflector, light source, an outer light cover, and a curved transflective surface. Embodiments of light assemblies described herein are useful, for example, as signs, backlights, displays, task lighting, luminaire, and vehicle (e.g., cars, trucks, airplanes, etc.) components. Vehicle comprising light assemblies include those where the light assembly is a vehicle tail light assembly
Abstract:
Nozzles and method of making the same are disclosed. The disclosed nozzles have at least one nozzle through-hole therein, wherein the at least one nozzle through-hole has (i) a single inlet opening along an inlet face and multiple outlet openings along an outlet face or (ii) multiple inlet openings along an inlet face and a single outlet opening along an outlet face. Fuel injectors containing the nozzle are also disclosed. Methods of making and using nozzles and fuel injectors are further disclosed.
Abstract:
Nozzles and method of making the same are disclosed. The disclosed nozzles have a non-coined three-dimensional inlet face and an outlet face opposite the inlet face. The nozzles may have one or more nozzle through-holes extending from the inlet face to the outlet face. Fuel injectors containing the nozzle are also disclosed. Methods of making and using nozzles and fuel injectors are further disclosed.
Abstract:
Nozzles and method of making the same are disclosed. The disclosed nozzles have at least one nozzle through-hole therein, wherein the at least one nozzle through-hole exhibits a coefficient of discharge, CD, of greater than about 0.50. Fuel injectors containing the nozzle are also disclosed. Methods of making and using nozzles and fuel injectors are further disclosed.
Abstract:
A method of fabricating a nozzle that includes casting and curing a first material using a patterned nip roller to form a first microstructured pattern of discrete microstructures, deforming at least one of the discrete microstructures; replicating the first microstructured pattern, including the at least one deformed discrete microstructure, in a second material different than the first material to make a replicated structure comprising a plurality of blind holes formed in the second material, removing second material of the replicated structure to expose tops of microstructures in the first microstructured pattern, and removing the first material from the replicated structure, resulting in a nozzle having a plurality of through-holes in the second material and corresponding to the first microstructured pattern.
Abstract:
An optical connector includes a first attachment area for receiving and permanently attaching to an optical waveguide. A light coupling unit is disposed and configured to move translationally and not rotationally within the housing of the connector. The light coupling unit includes a second attachment area for receiving and permanently attaching to an optical waveguide received and permanently attached at the first attachment area. The light coupling unit also includes light redirecting surface. The light redirecting surface is configured such that when an optical waveguide is received and permanently attached at the first and second attachment areas, the light redirecting surface receives and redirects light from the optical waveguide. The optical waveguide limits, but does not prevent, a movement of the light coupling unit within the housing.
Abstract:
An optical connector includes a first attachment area (110) for receiving and permanently attaching to an optical waveguide (115). A light coupling unit (120) is disposed and configured to move translationally and not rotationally within the housing of the connector. The light coupling unit includes a second attachment area (121) for receiving and permanently attaching to an optical waveguide received and permanently attached at the first attachment area. The light coupling unit also includes light redirecting surface (122). The light redirecting surface is configured such that when an optical waveguide is received and permanently attached at the first and second attachment areas, the light redirecting surface receives and redirects light from the optical waveguide. The optical waveguide limits, but does not prevent, a movement of the light coupling unit within the housing.
Abstract:
A fuel injector nozzle comprising a plurality of holes formed therethrough connecting one side of the nozzle with an opposite side of the nozzle. Each of the holes comprises a hole entry on the one side of the nozzle having a first shape, a hole exit on the opposite side of the nozzle having a second shape, and a hole wall connecting the hole entry to the hole exit. The hole exit is smaller than the hole entry, and the hole wall comprises a side that is continuously curved from the hole entry to the hole exit.