Abstract:
A data communication apparatus, system, and method are described. The data communication system comprises a transceiver disposed on an entrance port to an enclosure, such as an underground enclosure. The transceiver includes a housing, the housing mountable to the entrance port, wherein the transceiver is configured to communicate with a network outside of the underground enclosure. The data communication system also includes a monitoring device disposed in the underground enclosure that provides data related to a real-time condition within the underground enclosure. The data communication system also includes a sensor analytics unit to process the data from the monitoring device/sensor and generate a processed data signal and to communicate the processed data signal to the transceiver.
Abstract:
A holder for a current sensor having separable portions with inner surfaces forming an opening and opposing outer surfaces having a groove to accommodate a current sensing coil. The holder includes flexible members on the portions and extending toward the opening such that the flexible members can hold a power cable substantially centered within the opening and concentric with the current sensing coil. The portions are joined together with a hinge pivotally mounted between them at one end and a releasable clasp joining them together at another end, providing for ease of installation around the power cable by hand and without requiring tools or additional fasteners.
Abstract:
A data communication apparatus, system, and method are described. The data communication system comprises a transceiver disposed on an entrance port to an enclosure, such as an underground enclosure. The transceiver includes a housing, the housing mountable to the entrance port, wherein the transceiver is configured to communicate with a network outside of the underground enclosure. The data communication system also includes a monitoring device disposed in the underground enclosure that provides data related to a real-time condition within the underground enclosure. The data communication system also includes a sensor analytics unit to process the data from the monitoring device/sensor and generate a processed data signal and to communicate the processed data signal to the transceiver.
Abstract:
An electronic unit that include a projector (100) and removable module (102) that communicates data to the projector (100), wherein the projector (100) alters its power consumption in response to data received from the removable module (102).
Abstract:
A projector (100) including a plurality of systems (110, 130) and a port (140) adapted to receive and communicate with a removable module (102). More particularly, the projector (100) is capable of indicating its capabilities to the removable module (102), receiving return information from the removable module (102), and selectively configuring the systems (110, 130) according to the return information when such removable module (102) is inserted into the port (140).
Abstract:
A fault circuit indicator (FCI) detection system for electrical equipment disposed in an enclosure or vault having an above-ground vent pipe exhaust outlet comprises one or more sensors disposed in the enclosure or vault to sense a condition of at least one unit of the electrical equipment. A sensored analytics unit (SAU) is coupled to the sensors to receive sensor data and analyze the sensor data, the SAU generating a corresponding analyzed data signal that provides information related to a condition of the at least one unit of electrical equipment. A transceiver is disposed inside at least a portion of the vent pipe to receive the analyzed data signal, wherein the transceiver is configured to communicate the analyzed data signal. A visual indicator is disposed on or within the vent pipe comprising one or more visual indicators, such as LEDs, driven by a driving circuit board to provide a visual signal corresponding to the condition of the at least one unit of electrical equipment.
Abstract:
A mounting structure for protecting a transceiver located on an underside of a manhole cover is formed from a metal or rugged plastic in the shape of a truncated dome or cone with a sloping sidewall and a cavity configured to receive a transceiver, wherein the mounting structure is mountable to an underside of the manhole cover. A data communication system for an enclosure comprises a transceiver configured to communicate with a network outside of the enclosure and a mounting structure to mount the transceiver to an underside of the manhole cover. The mounting structure is configured to protect the transceiver from damage during removal of the manhole cover from the entrance port of the enclosure.
Abstract:
A data communication apparatus, system, and method are described. The data communication system comprises a transceiver disposed on an entrance port to an enclosure, such as an underground enclosure. The transceiver includes a housing, the housing mountable to the entrance port, wherein the transceiver is configured to communicate with a network outside of the underground enclosure. The data communication system also includes a monitoring device disposed in the underground enclosure that provides data related to a real-time condition within the underground enclosure. The data communication system also includes a sensor analytics unit to process the data from the monitoring device/sensor and generate a processed data signal and to communicate the processed data signal to the transceiver.