Abstract:
Exemplary embodiments are directed to an equipment space that is a closed space provided with electrical equipment and an air dryer condensing the moisture of the air in the equipment space into water. A system for removing water from the equipment space includes a porous element having a capillary structure and being located in an outlet opening of the equipment space. The porous element is connected such that water condensed by the air dryer is directed to a first inner surface of the porous element. The capillary structure of the porous element is configured to propogate water from the inner surface of the porous element to an outer surface of the porous element. The outer surface of the porous element is configured to release water to ambient air outside the equipment space.
Abstract:
A cooling assembly includes a device chamber containing a device chamber cooling medium, a heat exchanger including at least one cooling surface in contact with the device chamber cooling medium, a control unit configured to control the heat exchanger, a humidity sensor configured to detect a humidity level in the device chamber, and a receptacle. The control unit is configured to perform a dehumidification operation as a response to the humidity level exceeding a predetermined threshold value in the device chamber. The dehumidification operation includes lowering a temperature of the at least one cooling surface in order to condensate water from the device chamber cooling medium on the at least one cooling surface. The receptacle is configured to receive water dripping from the at least one cooling surface.
Abstract:
An electronic apparatus includes an extruded metallic frame with walls which are integrated parts of the extruded metallic frame, at least one extruded flow channel in at least one of the walls for passing a cooling fluid within the respective wall, an inlet arranged outside the electronic apparatus and an outlet arranged outside the electronic apparatus for providing a flow path via the at least one extruded flow channel, and detachable covers which are attached to the walls for sealing off at least one electric component space from an outside of the electronic apparatus.
Abstract:
A method and arrangement are provided for reducing the amount of condensed moisture inside an enclosure which encloses at least one piece of electrical equipment which is configured to receive electric power from outside the enclosure in a first electrical magnitude range (0 . . . maxinput) and to feed electric power to outside the enclosure in a second electrical magnitude range (minoutput . . . maxoutput). Electric power received on at least one portion (a, b, c) of the first electrical magnitude range (0 . . . maxinput) being outside the second electrical magnitude range (minoutput . . . maxoutput) is utilized for heating the condensed moisture for exhaustion thereof.