摘要:
The present disclosure generally relates to an automated method and system for generating a three-dimensional (3D) representation of a skin structure of a subject. The method comprises: acquiring a plurality of two-dimensional (2D) cross-sectional images of the skin structure, specifically, using optical coherence tomography (OCT) technique; computing a cost for each 2D cross-sectional image based on a cost function, the cost function comprising an edge-based parameter and a non-edge-based parameter; constructing a 3D graph from the 2D cross-sectional images; and determining a minimum-cost closed set from the 3D graph based on the computed costs for the 2D cross-sectional images, wherein the 3D representation of the skin structure is generated from the minimum-cost closed set.
摘要:
A method and system are proposed to obtain a reduced speckle noise image of a subject from optical coherence tomography (OCT) image data of the subject. The cross sectional images each comprise a plurality of scan lines obtained by measuring the time delay of light reflected, in a depth direction, from optical interfaces within the subject. The method comprises two aligning steps. First the cross sectional images are aligned, then image patches of the aligned cross sectional images are aligned to form a set of aligned patches. An image matrix is then formed from the aligned patches; and matrix completion is applied to the image matrix to obtain a reduced speckle noise image of the subject.
摘要:
A non-stereo fundus image is used to obtain a plurality of glaucoma indicators. Additionally, genome data for the subject is used to obtain genetic marker data relating to one or more genes and/or SNPs associated with glaucoma. The glaucoma indicators and genetic marker data are input into an adaptive model operative to generate an output indicative of a risk of glaucoma in the subject. In combination, the genetic indicators and genome data are more informative about the risk of glaucoma than either of the two in isolation. The adaptive model may be a two-stage model, having a first stage in which individual genetic indicators are combined with respective portions of the genome data by first adaptive model modules to form respective first outputs, and a second stage in which the first outputs are combined by a second adaptive mode. Texture analysis is performed on the fundus images to classify them based on their quality, and only images which are determined to meet a quality criterion are subjected to an analysis to determine if they exhibit glaucoma indicators. Also, the images are put into a standard format. The system may include estimating the position of the optic cup by combining results from multiple optic cup segmentation techniques. The system may include estimating the position of the optic disc by applying edge detection to the funds image, excluding edge points that are unlikely to be optic disc boundary points, and estimating the position of an optic disc by fitting an ellipse to the remaining edge points.
摘要:
An optical coherence tomography (OCT) image composed of a plurality of A-scans of a structure is analyzed by defining, for each A-scan, a set of neighboring A-scans surrounding the A-slices scan. Following an optional de-noising step, the neighboring A-scans are aligned in the imaging direction, then a matrix X is formed from the aligned A-scans, and matrix completion is performed to obtain a reduced speckle noise image.
摘要:
A method is proposed for automatically locating the optic disc or the optic cup in an image of the rear of an eye. A portion of the image containing the optic disc or optic cup is divided into sub-regions using a clustering algorithm. Biologically inspired features, and optionally other features, are obtained for each of the sub-regions. An adaptive model uses the features to generate data indicative of whether each sub-region is within or outside the optic disc or optic cup. The result is then smoothed, to form an estimate of the position of the optic disc or optic cup.
摘要:
A method is proposed for automatically locating the optic disc or the optic cup in an image of the rear of an eye. A portion of the image containing the optic disc or optic cup is divided into sub-regions using a clustering algorithm. Biologically inspired features, and optionally other features, are obtained for each of the sub-regions. An adaptive model uses the features to generate data indicative of whether each sub-region is within or outside the optic disc or optic cup. The result is then smoothed, to form an estimate of the position of the optic disc or optic cup.
摘要:
A method is presented to obtain, from a retinal image, data characterizing the optic cup, such as data indicating the location and/or size of the optic cup in relation to the optic disc. A disc region of the retinal image of an eye, is expressed as a weighted sum of a plurality of pre-existing “reference” retinal images in a library, with the weights being chosen to minimize a cost function. The data characterizing the cup of the eye is obtained from cup data associated with the pre-existing disc images and the corresponding weights. The cost function includes (i) a construction error term indicating a difference between the disc region of the retinal image and a weighted sum of the reference retinal images, and (ii) a cost term, which may be generated using a weighted sum over the reference retinal images of a difference between the reference retinal images and the disc region of the retinal image.