Abstract:
The invention relates to a method for operating a thermal power plant, which includes a gas turbine and a generator driven directly by the gas turbine by means of a shaft and being connected to an electrical grid having a grid frequency (FG) via an electronic decoupling apparatus and a step-up transformer. A synthetic inertia response is achieved by said method includes the steps of: sensing said grid frequency (FG); detecting if in case of an excursion of said grid frequency (FG) additional inertial power is required or not; if inertial power is required, calculating the magnitude and duration of the additional inertial power; and releasing additional inertial power to said electrical grid in accordance with said calculations via said electronic decoupling apparatus.
Abstract:
The invention relates to a method for operating a thermal power plant, which includes a gas turbine and a generator driven directly by the gas turbine by means of a shaft and being connected to an electrical grid having a grid frequency (FG) via an electronic decoupling apparatus and a step-up transformer. A synthetic inertia response is achieved by said method includes the steps of: sensing said grid frequency (FG); detecting if in case of an excursion of said grid frequency (FG) additional inertial power is required or not; if inertial power is required, calculating the magnitude and duration of the additional inertial power; and releasing additional inertial power to said electrical grid in accordance with said calculations via said electronic decoupling apparatus.
Abstract:
A power plant includes a first gas turbine engine, a second gas turbine engine, a flue gas duct, a CO2 capture system for treating flue gases from the second gas turbine engine and an exhaust system. It additionally includes at least one among a direct connection between the first gas turbine engine and the exhaust system, and a damper for on-line regulating the flue gases flow through it, a direct connection between the first gas turbine engine and the CO2 capture system, and a damper for regulating the flue gases flow through it, a supply of fresh oxygen containing fluid for the second gas turbine engine.
Abstract:
The invention relates to a method for temporary increasing the power of a gas turbine, which is part of a combined-cycle power plant, wherein the exhaust gas of the gas turbine is used in a heat recovery steam generator to generate steam for a water/steam cycle including a steam turbine with a high pressure steam turbine, an intermediate pressure steam turbine and a low pressure steam turbine, whereby the method comprises the step of injecting steam from the water/steam cycle at a predetermined injection pressure into the gas turbine. The efficiency is improved by taking steam of a lower pressure than the predetermined injection pressure from the water/steam cycle, increasing the pressure of the steam taken from the water/steam cycle to the predetermined injection pressure by subjecting it in separate compressing means to a compression step, and injecting the compressed steam into the gas turbine.
Abstract:
A combined cycle power plant with a gas turbine, steam turbine, and first HRSG comprises a CO2 capture plant for the at least partial capture of CO2 from the exhaust gases from the gas turbine. It comprises in particular a second HRSG or boiler arranged to receive a portion of the exhaust gases and transfer its heat to steam and feedwater. Steam generated in the second HRSG or boiler is used for the operation of the CO2 capture plant and/or to operate a steam turbine that drives a generator and optionally a CO2 compressor. The power plant according to the invention allows for greater flexibility in power plant part load control and power plant efficiency. A method to operate the power plant is also claimed.
Abstract:
A method is provided for operating a combined cycle power plant having at least one gas turbine, a heat recovery steam generator (HSRG), a steam turbine and a CO2 capture system. The method includes recirculating a first partial flow of flue gases from the HRSG. The method also includes capturing CO2 from a second partial flow of flue gases from the HRSG; and operating a supplementary firing to increase the net power output of the plant and to at least partly compensate the power consumption of the CO2 capture system. A combined cycle power plant is also provided. The plant includes at least one gas turbine, at least one heat recovery steam generator, at least one steam turbine at least one CO2 capture system, and flue gas recirculation. The plant also includes a low excess air supplementary firing.
Abstract:
A power plant includes a first gas turbine engine, a second gas turbine engine, a flue gas duct, a CO2 capture system for treating flue gases from the second gas turbine engine and an exhaust system. It additionally includes at least one among a direct connection between the first gas turbine engine and the exhaust system, and a damper for on-line regulating the flue gases flow through it, a direct connection between the first gas turbine engine and the CO2 capture system, and a damper for regulating the flue gases flow through it, a supply of fresh oxygen containing fluid for the second gas turbine engine.