Abstract:
A power plant includes a first gas turbine engine, a second gas turbine engine, a flue gas duct, a CO2 capture system for treating flue gases from the second gas turbine engine and an exhaust system. It additionally includes at least one among a direct connection between the first gas turbine engine and the exhaust system, and a damper for on-line regulating the flue gases flow through it, a direct connection between the first gas turbine engine and the CO2 capture system, and a damper for regulating the flue gases flow through it, a supply of fresh oxygen containing fluid for the second gas turbine engine.
Abstract:
A power plant (1) that includes at least one of a gas turbine (GT), a steam turbine (ST) with a water-steam cycle, and a heat recovery steam generator (B) operatively connected to a heat generating member such as solar energy system (Ssolar) by means of a primary circuit (10a, 10b, 10c) and a secondary circuit system (20a). The primary heat transfer circuit (10a, 10b) includes solar heating system (Ssolar) configured to heat a primary fluid (10), and the secondary circuit (20a) comprises a flow line (20A) for a secondary flow (20) and a main heat exchanger (23) to exchange heat between the secondary water flow and a gas turbine inlet air flow (2). A first line (10B) in the primary circuit (10b) leads to a first heat exchanger (12) to heat the water flow in the secondary circuit (20a).
Abstract:
A combined cycle power plant with a gas turbine, steam turbine, and first HRSG comprises a CO2 capture plant for the at least partial capture of CO2 from the exhaust gases from the gas turbine. It comprises in particular a second HRSG or boiler arranged to receive a portion of the exhaust gases and transfer its heat to steam and feedwater. Steam generated in the second HRSG or boiler is used for the operation of the CO2 capture plant and/or to operate a steam turbine that drives a generator and optionally a CO2 compressor. The power plant according to the invention allows for greater flexibility in power plant part load control and power plant efficiency. A method to operate the power plant is also claimed.
Abstract:
In a method for operating a combined cycle power plant (10), which has a gas turbine installation (11) and a water-steam cycle (21) connected to the gas turbine installation (11) by a waste heat steam generator (24) and has at least one steam turbine (23), the gas turbine installation (11) includes a compressor (13), a combustion chamber (14), and a turbine (16). To cool the turbine (16), air compressed at the compressor (13) is removed, cooled in at least one cooler (18, 19) flowed through by water, thus generating steam, and introduced into the turbine (16). At least with the gas turbine installation (11) running, prior to or during the start-up of the water-steam cycle (21), waste heat, which is contained in the steam generated in the at least one cooler (18, 19), is used to good effect for pre-heating the installation inside the combined cycle power plant (10).
Abstract:
A power plant includes a first gas turbine engine, a second gas turbine engine, a flue gas duct, a CO2 capture system for treating flue gases from the second gas turbine engine and an exhaust system. It additionally includes at least one among a direct connection between the first gas turbine engine and the exhaust system, and a damper for on-line regulating the flue gases flow through it, a direct connection between the first gas turbine engine and the CO2 capture system, and a damper for regulating the flue gases flow through it, a supply of fresh oxygen containing fluid for the second gas turbine engine.
Abstract:
A power plant (1) that includes at least one of a gas turbine (GT), a steam turbine (ST) with a water-steam cycle, and a heat recovery steam generator (B) operatively connected to a heat generating member such as solar energy system (Ssolar) by means of a primary circuit (10a, 10b, 10c) and a secondary circuit system (20a). The primary heat transfer circuit (10a, 10b) includes solar heating system (Ssolar) configured to heat a primary fluid (10), and the secondary circuit (20a) comprises a flow line (20A) for a secondary flow (20) and a main heat exchanger (23) to exchange heat between the secondary water flow and a gas turbine inlet air flow (2). A first line (10B) in the primary circuit (10b) leads to a first heat exchanger (12) to heat the water flow in the secondary circuit (20a).
Abstract:
A method for operating a combined cycle power plant is disclosed, which has a gas turbine installation and a water-steam cycle connected to the gas turbine installation by a waste heat steam generator and has at least one steam turbine, the gas turbine installation includes a compressor, a combustion chamber, and a turbine. To cool the turbine, air compressed at the compressor is removed, cooled in at least one cooler flowed through by water, thus generating steam, and introduced into the turbine. At least with the gas turbine installation running, prior to or during the start-up of the water-steam cycle, waste heat, which is contained in the steam generated in the at least one cooler, is used to good effect for pre-heating the installation inside the combined cycle power plant.
Abstract:
The invention relates to a combined cycle power plant including a gas turbine the exhaust gas outlet of which is connected to a heat recovery steam generator, which is part of a water/steam cycle, whereby, for having a large power reserve and at the same time a higher design performance when operated at base load, the gas turbine is designed with a steam injection capability for power augmentation. For having a large power reserve at improved and optimized design performance when the plant is being operated at base load, the gas turbine includes at least one combustor, and a compressor for providing cooling air for that gas turbine, which is extracted from the compressor and cooled down in at least one cooling air cooler. The steam for steam injection is generated in said cooling air cooler, whereby said steam is injected into an air side inlet or outlet of said cooling air cooler and/or directly into said at least one combustor. The heat recovery steam generator is equipped with a supplementary firing, which is at least a single stage supplementary firing to increase the high pressure steam production and providing augmentation power as power reserve to a grid when required.