Abstract:
A stage, suitable for use in an analog to digital converter or a digital to analog converter where the stage comprises a plurality of slices that can be operated together to form a composite output, can have reduced thermal noise, whilst each slice on its own has sufficiently small capacitance to respond quickly to changes in digital codes applied to the slice. This allows a fast conversion to be achieved without loss of noise performance.
Abstract:
A signal gate is provided where the gate can be low impedance to allow a signal to pass or be high impedance to block it. The signal gate has two output nodes arranged such that during the blocking mode spurious signals passing through the gate by way of parasitic components are presented as common mode signals at the output nodes.
Abstract:
A dither is an uncorrelated signal, usually pseudo-random noise injected into the input of an ADC such that a given input value of the wanted signal becomes spread over a plurality of codes. This reduces the effect of DNL and also smooths the integral non-linearity (INL) response of the ADC. The advantages of introducing dither could be obtained without having to perturb the signal input to the ADC. This avoids the introduction of additional components in the ADC. The dither can be applied to the components used to form a residue of the ADC stage within a pipelined converter. For example, a dither can be applied solely to a DAC part or different dithers can be applied to a ADC and DAC parts respectively. This allows greater flexibility of linearization of the ADC response and the formation of an analog residue by the DAC.
Abstract:
According to a first aspect of this disclosure there is provided a voltage controlled current path. The voltage controlled current path comprises a first stage arranged to conduct current once the voltage at an input node of the first stage exceeds a threshold value. The amount of current that passes through the first stage is a function of the voltage at the input node. A second stage is arranged to pass a current that is a function of the current passing through the first stage.
Abstract:
A stage, suitable for use in an analog to digital converter or a digital to analog converter, can have a plurality of slices that can be operated together to form a composite output. The stage can have reduced thermal noise, while each slice on its own has sufficiently small capacitance to respond quickly to changes in digital codes applied to the slice. This feature allows a fast conversion to be achieved without loss of noise performance.
Abstract:
A stage, suitable for use in and analog to digital converter or a digital to analog converter, comprises a plurality of slices. The slices can be operated together to form a composite output having reduced thermal noise, while each slice on its own has sufficiently small capacitance to respond quickly to changes in digital codes applied to the slice. This allows a fast conversion to be achieved without loss of noise performance. The slices can be sub-divided to reduce scaling mismatch between the most significant bit and the least significant bit. A shuffling scheme is implemented that allows shuffling to occur between the sub-sections of the slices without needing to implement a massively complex shuffler.