Abstract:
Methods and apparatus that reduce network management overhead required for the operation of wireless femtocells. In one aspect of the invention, a central network entity governs the simultaneous operation of several femtocells by specifying modes of operation, and operational parameters for one or more of the femtocells. In one embodiment, at least one of the specified modes of operation directs a femtocell to operate in a substantially autonomous manner within the network-defined operational parameters. The network-defined constraints are provided to the femtocell for example, responsive to a successful registration attempt.
Abstract:
Methods and apparatus that enable and optimize the simultaneous operation of several wireless femtocells having overlapping coverage areas. In one embodiment of the invention, a resource allocation (e.g., time-frequency grid for an OFDM or TDMA based wireless network) governs the simultaneous operation of several femtocells with overlapping coverage areas by specifying uses for resources. A resource allocation unit (RAU) entity is disclosed for managing and modifying resource allocations for femtocells. The community of femtocells can flexibly share resources according to the time-frequency grid, thereby maximizing spectral efficiency without requiring substantial network overhead.
Abstract:
Embodiments have a master eNB with a control plane and optional data plane to user equipment and a secondary eNB with a data plane to the user equipment. The user equipment thus uses both the master eNB and the secondary eNB for data communications while receiving control information from only the master eNB. The master eNB and secondary eNB are connected with an X2 interface. When the secondary eNB desires to refresh its security key, it informs the master eNB using the X2 interface. The master eNB then uses its control plane with the user equipment to initiate a security key refresh for the secondary eNB.
Abstract:
Methods and apparatus that enable and optimize the simultaneous operation of several wireless femtocells having overlapping coverage areas. In one embodiment of the invention, a resource allocation (e.g., time-frequency grid for an OFDM or TDMA based wireless network) governs the simultaneous operation of several femtocells with overlapping coverage areas by specifying uses for resources. A resource allocation unit (RAU) entity is disclosed for managing and modifying resource allocations for femtocells. The community of femtocells can flexibly share resources according to the time-frequency grid, thereby maximizing spectral efficiency without requiring substantial network overhead.
Abstract:
Methods and apparatus that enable and optimize the simultaneous operation of several wireless femtocells having overlapping coverage areas. In one embodiment of the invention, a resource allocation (e.g., time-frequency grid for an OFDM or TDMA based wireless network) governs the simultaneous operation of several femtocells with overlapping coverage areas by specifying uses for resources. A resource allocation unit (RAU) entity is disclosed for managing and modifying resource allocations for femtocells. The community of femtocells can flexibly share resources according to the time-frequency grid, thereby maximizing spectral efficiency without requiring substantial network overhead.
Abstract:
Wireless communication devices may directly communicate within groups of wireless communication devices using Layer-2 communications to implement “push-to-talk” type applications. In one implementation, a method may include generating a floor request signaling message to take control of a communication channel for a group. After transmitting data relating to the communications, a floor release signaling message may be generated and transmitted a number of times.
Abstract:
Methods and apparatus enabling a wireless network to provide differentiated services to a machine-to-machine (M2M) client. In one embodiment, the wireless network comprises a UMTS network, and the Home Location Register (HLR) entity identifies subscriptions as machine-to-machine (M2M) enabled devices based on flags or other descriptors associated with each M2M device, and imposes one or more rule sets (e.g., service restrictions) based on this identification. The classification of M2M devices within the HLR may optionally include additional capability or profile data for the M2M device (e.g. static, low mobility, low data activity, etc.). Various other network entities may use the M2M identification to modify the delivered data service, so as to optimize network resources. Furthermore, monitoring of M2M client behavior can be used to detect and notify the network operator of abnormal, fraudulent, or malicious activity. Business methods utilizing the aforementioned methods and apparatus are also disclosed.
Abstract:
Wireless communication devices may directly communicate within groups of wireless communication devices using Layer-2 communications to implement “push-to-talk” type applications. In one implementation, a method may include generating a floor request signaling message to take control of a communication channel for a group. After transmitting data relating to the communications, a floor release signaling message may be generated and transmitted a number of times.
Abstract:
Methods and apparatus that enable and optimize the simultaneous operation of several wireless femtocells having overlapping coverage areas. In one embodiment of the invention, a resource allocation (e.g., time-frequency grid for an OFDM or TDMA based wireless network) governs the simultaneous operation of several femtocells with overlapping coverage areas by specifying uses for resources. A resource allocation unit (RAU) entity is disclosed for managing and modifying resource allocations for femtocells. The community of femtocells can flexibly share resources according to the time-frequency grid, thereby maximizing spectral efficiency without requiring substantial network overhead.
Abstract:
Wireless communication devices may directly communicate within groups of wireless communication devices using Layer-2 communications to implement “push-to-talk” type applications. In one implementation, a method may include generating a floor request signaling message to take control of a communication channel for a group. After transmitting data relating to the communications, a floor release signaling message may be generated and transmitted a number of times.